Bibliography#

RVT has been used in a variety of applications, from archaeology to urban heat island modelling, landscape recognition and analysis, and ceramic imaging.

Here is a list of journal articles that originated from the Scopus database. If you have used RVT and your publication is not listed, please contact us.


[1]

D. Abate, M. Faka, C. Keleshis, C. Constantinides, A. Leonidou, and A. Papageorgiou. Aerial image-based documentation and monitoring of illegal archaeological excavations. Heritage, 6(5):4302–4319, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85160320524&doi=10.3390%2fheritage6050228&partnerID=40&md5=67763b1331c3cae2d08ced4acc5f6e20, doi:10.3390/heritage6050228.

[2]

J. Hollesen, M. S. Jepsen, and H. Harmsen. The application of rgb, multispectral, and thermal imagery to document and monitor archaeological sites in the arctic: a case study from south greenland. Drones, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149152652&doi=10.3390%2fdrones7020115&partnerID=40&md5=4b0e0dad5645479f863d8481b053fded, doi:10.3390/drones7020115.

[3]

J. Ikäheimo. Detecting pitfall systems in the suomenselkä watershed, finland, with airborne laser scanning and artificial intelligence. Journal of Archaeological Science: Reports, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85171758750&doi=10.1016%2fj.jasrep.2023.104216&partnerID=40&md5=3124991d43ebf217d1773ad2e7e09005, doi:10.1016/j.jasrep.2023.104216.

[4]

I. Kadhim and F. M. Abed. A critical review of remote sensing approaches and deep learning techniques in archaeology. Sensors, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85151188371&doi=10.3390%2fs23062918&partnerID=40&md5=3cdefe50228f23505a5b252365d0a6eb, doi:10.3390/s23062918.

[5]

I. Kadhim, F. M. Abed, J. M. Vilbig, V. Sagan, and C. DeSilvey. Combining remote sensing approaches for detecting marks of archaeological and demolished constructions in cahokia's grand plaza, southwestern illinois. Remote Sensing, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149260920&doi=10.3390%2frs15041057&partnerID=40&md5=381b54b9da7a4c39ee67e3db349c785d, doi:10.3390/rs15041057.

[6]

B. Kazimi and M. Sester. Self-supervised learning for semantic segmentation of archaeological monuments in dtms. Journal of Computer Applications in Archaeology, 6(1):155–173, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179966569&doi=10.5334%2fjcaa.110&partnerID=40&md5=96f1b1aa02a0e05cd40bca52c3ceef24, doi:10.5334/jcaa.110.

[7]

D. Kobiałka, M. Kostyrko, A. Lokś, K. Karski, V. Rezler-Wasielewska, P. Stanek, A. Wickiewicz, E. Góra, S. Tomczak, and M. Pawleta. “hell camp” hidden in the forest–the materiality of stalag viii b (344) lamsdorf. Journal of Conflict Archaeology, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85178203285&doi=10.1080%2f15740773.2023.2288959&partnerID=40&md5=7de4351c9ed2ae39d7b1645dfcc56de4, doi:10.1080/15740773.2023.2288959.

[8]

M. H. Hofmann, N. W. Hinman, M. Phillips, M. McInenly, G. Chong-Diaz, K. Warren-Rhodes, and N. A. Cabrol. Gypsum-lined degassing holes in tumuli. Earth Surface Processes and Landforms, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169690692&doi=10.1002%2fesp.5692&partnerID=40&md5=230488b7714b9c8c3e5548284f9386f0, doi:10.1002/esp.5692.

[9]

D. Kobiałka, M. Pawleta, K. Karski, M. Kostyrko, A. Lokś, V. Rezler-Wasielewska, P. Stanek, A. Czerner, E. Góra, M. Michalski, S. Tomczak, Z. Kowalczyk, S. Ważyński, and P. Wroniecki. Camp archaeology at the site of national remembrance in Łambinowice (formerly lamsdorf), poland. International Journal of Historical Archaeology, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159267534&doi=10.1007%2fs10761-023-00700-y&partnerID=40&md5=e66649136a4fb1940e223b927a4a712e, doi:10.1007/s10761-023-00700-y.

[10]

C. Koski, P. Kettunen, J. Poutanen, L. Zhu, and J. Oksanen. Mapping small watercourses from dems with deep learning—exploring the causes of false predictions. Remote Sensing, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161605652&doi=10.3390%2frs15112776&partnerID=40&md5=a55f29f0bfef186cfcb96a25da78891b, doi:10.3390/rs15112776.

[11]

A. Łabuz, N. Borowiec, and U. Marmol. Automatic detection of lusatian culture fortified settlement based on data from airborne laser scanning. International Journal of Conservation Science, 14(1):83–98, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159812092&doi=10.36868%2fIJCS.2023.01.07&partnerID=40&md5=615a7d54810b489bebb1bfad773f4d3e, doi:10.36868/IJCS.2023.01.07.

[12]

J. Lehner, P. Wernette, A. Smith, and C. Houser. Multi-dimensional approach for interpreting the structure of barrier island morphology. Geomorphology, 2024. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180489539&doi=10.1016%2fj.geomorph.2023.109006&partnerID=40&md5=e5bef2db8542e7eee7933c102eccf240, doi:10.1016/j.geomorph.2023.109006.

[13]

Z. Li. New opportunities for archaeological research in the greater ghingan range, china: application of uav lidar in the archaeological survey of the shenshan mountain. Journal of Archaeological Science: Reports, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168536765&doi=10.1016%2fj.jasrep.2023.104182&partnerID=40&md5=34606d64485c3193caba948fcb5f9ef7, doi:10.1016/j.jasrep.2023.104182.

[14]

Y. Liang, S. Cao, M. Du, L. Lu, J. Jiang, J. Quan, and M. Yang. Local climate zone mapping using remote sensing: a synergetic use of daytime multi-view ziyuan-3 stereo imageries and luojia-1 nighttime light data. International Journal of Digital Earth, 16(1):3456–3488, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169549632&doi=10.1080%2f17538947.2023.2251437&partnerID=40&md5=9a759d0bf655810f4fc67d95850dbad2, doi:10.1080/17538947.2023.2251437.

[15]

X. Zhong, L. Zhao, X. Zhang, J. Wang, H. Zhao, and P. Ren. Analysis of the adjacency effect on retrieval of land surface temperatures based on multimodal images from unmanned aerial vehicles. URBAN CLIMATE, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169046528&doi=10.1016%2fj.uclim.2023.101664&partnerID=40&md5=1a83587e1d501c687789cdd3f38cdfff, doi:10.1016/j.uclim.2023.101664.

[16]

Ž. Kokalj, S. Džeroski, I. Šprajc, J. Štajdohar, A. Draksler, and M. Somrak. Machine learning-ready remote sensing data for maya archaeology. Scientific Data, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168596294&doi=10.1038%2fs41597-023-02455-x&partnerID=40&md5=019116c68e2a3bd254ae201fa52f05c2, doi:10.1038/s41597-023-02455-x.

[17]

V. Yordanov, Q. X. Truong, and M. A. Brovelli. Estimating landslide surface displacement by combining low-cost uav setup, topographic visualization and computer vision techniques. Drones, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149243740&doi=10.3390%2fdrones7020085&partnerID=40&md5=355b5e849d6d22fabb6f7be4c29f2d92, doi:10.3390/drones7020085.

[18]

Z.-W. He and B.-H. Tang. Retrieval of rugged mountainous areas land surface temperature from high-spatial-resolution thermal infrared remote sensing data. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 61:1–16, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176787359&doi=10.1109%2fTGRS.2023.3316624&partnerID=40&md5=2faa62726c7f37d08dd13d4c34b760ec, doi:10.1109/TGRS.2023.3316624.

[19]

L. Han, P. Duan, J. Liu, and J. Li. Research on landslide trace recognition by fusing uav-based lidar dem multi-feature information. Remote Sensing, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85174193640&doi=10.3390%2frs15194755&partnerID=40&md5=a44a623335873af2af92a0c621f104bc, doi:10.3390/rs15194755.

[20]

J. Czerniec, K. Kozioł, M. Jankowski, P. Lewińska, C.A.G. Santos, and K. Maciuk. How to find the undiscovered? anthropogenic objects in forest areas: a critical assessment of current methods. International Journal of Conservation Science, 14(1):115–130, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159809487&doi=10.36868%2fIJCS.2023.01.09&partnerID=40&md5=37fe00372a1a3853dd104d512bfeb26f, doi:10.36868/IJCS.2023.01.09.

[21]

L. Čapek and M. Chalánek. The deserted medieval village of zábdiší on the estate of Žebrák castle. Archaeologia Historica, 48(2):587–609, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182893965&doi=10.5817%2fAH2023-2-13&partnerID=40&md5=dd2c9825365df9caeeff9468fecfa6f4, doi:10.5817/AH2023-2-13.

[22]

C. A. Delaney, K. Adamson, L. D. Linch, S. Davis, and S. McCarron. Reconstructing terrestrial ice sheet retreat dynamics from hummocky topography using multiscale evidence: an example from central ireland. Quaternary Science Reviews, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85151661987&doi=10.1016%2fj.quascirev.2023.108041&partnerID=40&md5=cb589001bc69c77f7b50a0b5fd856ab3, doi:10.1016/j.quascirev.2023.108041.

[23]

X. Dong, B. Deng, F. Yuan, X. Fu, W. Zhang, Y. Ju, and X. Ren. Application of aerial remote sensing in geological hazards: current situation and prospects. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 48(12):1897–1913, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179888137&doi=10.13203%2fj.whugis20220151&partnerID=40&md5=8755e8b751d0f10ef243affa9587f3e6, doi:10.13203/j.whugis20220151.

[24]

G. Dotta, A. Fornaciai, G. Bertolini, I. Isola, L. Nannipieri, M. Favalli, P. Burrato, R. Devoti, G. Gigli, L. Mucchi, E. Intrieri, M. Pizziolo, T. Gracchi, and N. Casagli. Geomorphology of the upper sector of the roncovetro active landslide (emilia-romagna region, italy). Journal of Maps, 19(1):1–11, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177579012&doi=10.1080%2f17445647.2023.2277898&partnerID=40&md5=21ae25eccae8ff93a55d2d3d1d71b7de, doi:10.1080/17445647.2023.2277898.

[25]

E. Draganits, B. Moshammer, G. Kremer, and M. Doneus. Geoarchaeological remote sensing prospection of miocene limestone quarries in the hinterland of roman carnuntum and vindobona(vienna basin, austria). Austrian Journal of Earth Sciences, 116(1):39–83, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85162077596&doi=10.17738%2fajes.2023.0003&partnerID=40&md5=bf4b471a5cfc1edf648829e6b30f3b71, doi:10.17738/ajes.2023.0003.

[26]

D. Han, X. Xu, Z. Qiao, F. Wang, H. Cai, H. An, K. Jia, Y. Liu, Z. Sun, S. Wang, and W. Han. The roles of surrounding 2d/3d landscapes in park cooling effect: analysis from extreme hot and normal weather perspectives. BUILDING AND ENVIRONMENT, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147191100&doi=10.1016%2fj.buildenv.2023.110053&partnerID=40&md5=d5c4a0a72b49903c9522915a048379dc, doi:10.1016/j.buildenv.2023.110053.

[27]

Y. Fang, L. Zhao, B. Dou, Y. Li, and S. Wang. Circuit vrc: a circuit theory-based ventilation corridor model for mitigating the urban heat islands. BUILDING AND ENVIRONMENT, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169575358&doi=10.1016%2fj.buildenv.2023.110786&partnerID=40&md5=f9874ce846220dd918f45a9798085818, doi:10.1016/j.buildenv.2023.110786.

[28]

J. Fernández-Lozano, V. Turu, R. M. Carrasco, R. L. Soteres, J. Sánchez-Vizcaino, T. Karampaglidis, X. Ros, O. Merlo, and J. Pedraza. The mid-latitude hydrolaccolith of the spanish central system (southern europe): a top-to-bottom integration of geomatic, geophysical and sedimentary datasets for characterising a singular periglacial landform. Land Degradation and Development, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85178231575&doi=10.1002%2fldr.4968&partnerID=40&md5=29223185478a2c630f9d085e565760ca, doi:10.1002/ldr.4968.

[29]

S. Field. Lidar-derived road profiles. Advances in Archaeological Practice, 11(2):184–197, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85162147550&doi=10.1017%2faap.2022.31&partnerID=40&md5=8679f98422931be787b3f8ff504442aa, doi:10.1017/aap.2022.31.

[30]

J. Fonte, A. L. Rodrigues, M. I. Dias, D. Russo, T. D. Pereiro, J. Carvalho, S. Amorim, C. Jorge, P. Monteiro, C. Ferro-Vázquez, J. M. Costa-García, M. Gago, and I. Oltean. Reassessing roman military activity through an interdisciplinary approach: myth and archaeology in laboreiro mountain (northwestern iberia). Journal of Archaeological Science: Reports, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85151638668&doi=10.1016%2fj.jasrep.2023.103993&partnerID=40&md5=caaebce3528a4c21cba6864b556fa86e, doi:10.1016/j.jasrep.2023.103993.

[31]

Y. Mo, Z. Guo, R. Zhong, W. Song, and S. Cao. Urban functional zone classification using light-detection-and-ranging point clouds, aerial images, and point-of-interest data. Remote Sensing, 2024. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85183327352&doi=10.3390%2frs16020386&partnerID=40&md5=4a57673d9636a8abbf4cbb570bc6b91e, doi:10.3390/rs16020386.

[32]

A. Ghosh and B. Bera. Landform classification and geomorphological mapping of the chota nagpur plateau, india. Quaternary Science Advances, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85151021095&doi=10.1016%2fj.qsa.2023.100082&partnerID=40&md5=8cc250a0d2064fb53144d0619c41c1e9, doi:10.1016/j.qsa.2023.100082.

[33]

D. Han, H. An, H. Cai, F. Wang, X. Xu, Z. Qiao, K. Jia, Z. Sun, and Y. An. How do 2d/3d urban landscapes impact diurnal land surface temperature: insights from block scale and machine learning algorithms. SUSTAINABLE CITIES AND SOCIETY, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85171171735&doi=10.1016%2fj.scs.2023.104933&partnerID=40&md5=dee537370861226e36110848ae324e96, doi:10.1016/j.scs.2023.104933.

[34]

R. C. Fernández, M. R. Velasco, I. H. Uceda, and J. Martínez-González. La marañosa-albende (san martín de la vega, madrid): late antique castled settlement and andalusian ḥiṣn. results of the application of lidar technology to archaeological prospection. Cuadernos de Prehistoria y Arqueologia de la Universidad Autonoma de Madrid, 49(2):241–261, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182632782&doi=10.15366%2fCUPAUAM2023.49.2.009&partnerID=40&md5=ceb0e71ced57ebf59af589da9498f7d0, doi:10.15366/CUPAUAM2023.49.2.009.

[35]

N. Crabb, C. Carey, A. J. Howard, and M. Brolly. Lidar visualization techniques for the construction of geoarchaeological deposit models: an overview and evaluation in alluvial environments. Geoarchaeology, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150938546&doi=10.1002%2fgea.21959&partnerID=40&md5=00cadf145d7813860842de15be2534cb, doi:10.1002/gea.21959.

[36]

J. S. Lim and G. J. Linares Matás. Dunes, death, and datasets: modelling funerary monument construction in remote arid landscapes using spaceborne stereo imagery. Journal of Archaeological Science, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85162139332&doi=10.1016%2fj.jas.2023.105815&partnerID=40&md5=f48fed450e7754fa38f078f5fa2a42b4, doi:10.1016/j.jas.2023.105815.

[37]

Q. Xu, B. Zhao, K. Dai, X. Dong, W. Li, X. Zhu, Y. Yang, X. Xiao, X. Wang, J. Huang, H. Lu, B. Deng, and D. Ge. Remote sensing for landslide investigations: a progress report from china. Engineering Geology, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159186201&doi=10.1016%2fj.enggeo.2023.107156&partnerID=40&md5=ed3a9da2477e86a42f5043a4c2c2fabb, doi:10.1016/j.enggeo.2023.107156.

[38]

M. Sánchez-Fernández, L. Arenas-García, and J. A. Gutiérrez Gallego. Detection of construction and demolition illegal waste using photointerpretation of dem models of lidar data. Land, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180689325&doi=10.3390%2fland12122119&partnerID=40&md5=9494553b4b11676e01d04fc5c4b7c23f, doi:10.3390/land12122119.

[39]

C. Ru, S.-B. Duan, X.-G. Jiang, Z.-L. Li, C. Huang, and M. Liu. An extended sw-tes algorithm for land surface temperature and emissivity retrieval from ecostress thermal infrared data over urban areas. REMOTE SENSING OF ENVIRONMENT, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150191258&doi=10.1016%2fj.rse.2023.113544&partnerID=40&md5=14db35da06fa7484119a81262023a6ed, doi:10.1016/j.rse.2023.113544.

[40]

O. Risbøl, J.S.P. Eidshaug, H. B. Bjerck, M. M. Gran, K. R. Rantala, A. M. Tivoli, and A.F.J. Zangrando. Uav lidar in coastal environments: archaeological case studies from tierra del fuego, argentina, and vega, norway. Archaeological Prospection, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176271512&doi=10.1002%2farp.1918&partnerID=40&md5=45a4fdf028b26214b67e2499a9ea41b9, doi:10.1002/arp.1918.

[41]

A. M. Rekemová, R. Čambal, and I. Bazovský. Aplikácia nedeštruktívnych metód na lokalite tvrdošovce (predbežné výsledky). Zbornik Slovenskeho Narodneho Muzea Archeologia, 33:115–129, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85183009938&doi=10.55015%2fXHTO2250&partnerID=40&md5=155d8427c7d0a2ac64cb4951b842f7cc, doi:10.55015/XHTO2250.

[42]

G. Poggi, L. Dallai, and V. Volpi. Mining under the canopy: unveiling the archaeo-mining record in the colline metallifere with lidar analysis and multidisciplinary studies. Quaternary International, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169507176&doi=10.1016%2fj.quaint.2023.08.006&partnerID=40&md5=9140af7f4cb09442a464cbb385539af9, doi:10.1016/j.quaint.2023.08.006.

[43]

V. Petras, A. Petrasova, J. B. McCarter, H. Mitasova, and R. K. Meentemeyer. Point density variations in airborne lidar point clouds. Sensors, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147846600&doi=10.3390%2fs23031593&partnerID=40&md5=bf6f5827896b448bf209fbca3b18392c, doi:10.3390/s23031593.

[44]

K.F.-C. Sit, C.-H. Pun, W.W.L. Lai, D.K.-W. Chung, and C.-M. Kwong. Unfolding wwii heritages with airborne and ground-based laser scanning. Heritage, 6(9):6189–6212, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172266745&doi=10.3390%2fheritage6090325&partnerID=40&md5=1116484d2f00e74d7d0b0e4f8542e77f, doi:10.3390/heritage6090325.

[45]

A. Pețan and A. Hegyi. Freely available lidar-derived digital terrain model (dtm) uncovers the heartland of the dacian kingdom. Digital Applications in Archaeology and Cultural Heritage, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172879468&doi=10.1016%2fj.daach.2023.e00292&partnerID=40&md5=813bb9f375baf864ce8787ff17be07ac, doi:10.1016/j.daach.2023.e00292.

[46]

B. T. Pandolpho, M. Urlaub, C. Berndt, and J. Bialas. Identification and differentiation of vertical movement through morphological changes and stratigraphic imprint: two distinct uplifting mechanisms in the upper calabrian accretionary wedge, western ionian sea. Basin Research, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169667614&doi=10.1111%2fbre.12819&partnerID=40&md5=adf40d17facd2b0895f12eca9e199857, doi:10.1111/bre.12819.

[47]

A. J. Ortiz Villarejo, J. M. Delgado Barrado, G. Casagrande, and J. M. Valderrama Zafra. Remote sensing and archaeology in modern age: the study case of the aldea de buenos aires in sierra morena. Journal of Archaeological Science: Reports, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85171803018&doi=10.1016%2fj.jasrep.2023.104205&partnerID=40&md5=460c3009cf0a71db94f100a782cae058, doi:10.1016/j.jasrep.2023.104205.

[48]

A. J. Ortiz Villarejo and J. M. Delgado Barrado. Digitalescape project—aerial remote sensing, hbim, and archaeology for the preservation and dissemination of the cultural heritage at risk in the sierra sur and sierra morena regions. Remote Sensing, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164917795&doi=10.3390%2frs15133315&partnerID=40&md5=19c47320b6c89390662dafc911a45d27, doi:10.3390/rs15133315.

[49]

A. Novak, S. Poglajen, and M. Vrabec. Not another hillshade: alternatives which improve visualizations of bathymetric data. Frontiers in Marine Science, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179350233&doi=10.3389%2ffmars.2023.1266364&partnerID=40&md5=4f387de777e07960f56f34577b062e91, doi:10.3389/fmars.2023.1266364.

[50]

J. M. Niebylski, D. Stefański, and P. Wierzbicki. The formation of the units of the polish people's army (1944-1945) in eastern poland. the lidar evidence. Archaeologia Polona, 61:269–287, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85183053228&doi=10.23858%2fAPA61.2023.3499&partnerID=40&md5=733c095969e546d837c2ad348f327746, doi:10.23858/APA61.2023.3499.

[51]

M. G. Mohlehli, E. Adam, and M. H. Schoeman. The potential for lidar using support vector machine (svm) to detect archaeological stone-walled structures in khutwaneng, bokoni. South African Archaeological Bulletin, 78(218):33–42, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85175016526&partnerID=40&md5=d18fd7e9259aa5432976dca962e59b41.

[52]

M. E. Pérez Rivas, A. López Corral, H.A.G. Silva, T. W. Stanton, A. Daniel Urías Lugo, and S. M. Acevedo. Hallazgos con lidar en el tren maya. Arqueologia Mexicana, pages 84–89, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85181710034&partnerID=40&md5=27b0f24d222d145724a9d39ccd9638e3.

[53]

J. Yang, Z. Wu, M. Menenti, M. S. Wong, Y. Xie, R. Zhu, S. Abbas, and Y. Xu. Impacts of urban morphology on sensible heat flux and net radiation exchange. URBAN CLIMATE, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163554047&doi=10.1016%2fj.uclim.2023.101588&partnerID=40&md5=41168b51b186a0231aa52548978e29e4, doi:10.1016/j.uclim.2023.101588.

[54]

R. M. Soares, M. Nabais, T. D. Pereiro, R. Dias, J. Hipólito, J. Fonte, L. G. Seco, F. Menéndez-Marsh, and A. Neves. New plan of the velho de safara castle: integration of archaeological data with high-resolution topography derived from drone-lidar survey. Estudos do Quaternario, 2023(23):66–75, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85181735499&doi=10.30893%2feq.v0i23.217&partnerID=40&md5=9e8ff6e959fd3edfae757d70551fb454, doi:10.30893/eq.v0i23.217.

[55]

M. Sobala. Detection of past landscape elements in marginal mountain areas—the example of the western carpathians. ARCHAEOLOGICAL AND ANTHROPOLOGICAL SCIENCES, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150923804&doi=10.1007%2fs12520-023-01750-3&partnerID=40&md5=03de54da9af6e39b032f69ab901cf6a7, doi:10.1007/s12520-023-01750-3.

[56]

P. Wroniecki, M. Furmanek, and Wł. Raȩczkowski. Revealing the extent of neolithic rondel enclosures in lower silesia using non-invasive prospection. Antiquity, 97(395):1100–1118, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85175460417&doi=10.15184%2faqy.2023.24&partnerID=40&md5=0bfd4451e1cb428c864dbe3c93792d7a, doi:10.15184/aqy.2023.24.

[57]

Y. Liu, Q. Hu, S. Wang, F. Zou, M. Ai, and P. Zhao. Discovering the ancient tomb under the forest using machine learning with timing-series features of sentinel images: taking baling mountain in jingzhou as an example. Remote Sensing, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147947286&doi=10.3390%2frs15030554&partnerID=40&md5=e62ad7bcd02e328d917977d64ec35fdb, doi:10.3390/rs15030554.

[58]

L. Liu, M. Lin, Z. Du, J. Liu, G. Chen, and J. Du. Developing a cnn-based, block-scale oriented local climate zone mapping approach: a case study in guangzhou. BUILDING AND ENVIRONMENT, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161054980&doi=10.1016%2fj.buildenv.2023.110414&partnerID=40&md5=0df787474bfdbcdee5ea2a512e9a37af, doi:10.1016/j.buildenv.2023.110414.

[59]

Y. Liu and H. Wang. The effects of 2d and 3d urban morphology on air quality. Water, Air, and Soil Pollution, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169571522&doi=10.1007%2fs11270-023-06592-2&partnerID=40&md5=514880dbca94b1b1766c719c93fb2b1c, doi:10.1007/s11270-023-06592-2.

[60]

M. Weber, D. G. Passmore, D. Capps-Tunwell, and H.G.W. Davie. The battle of the seelow heights, april 1945: conflict archaeology in the forests of eastern brandenburg, germany. Journal of Conflict Archaeology, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150706754&doi=10.1080%2f15740773.2023.2183784&partnerID=40&md5=bf34425a88dea27baa92a3818fc22012, doi:10.1080/15740773.2023.2183784.

[61]

Q. Wang, X. Wang, Y. Meng, Y. Zhou, and H. Wang. Exploring the impact of urban features on the spatial variation of land surface temperature within the diurnal cycle. SUSTAINABLE CITIES AND SOCIETY, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147092355&doi=10.1016%2fj.scs.2023.104432&partnerID=40&md5=2afcae58d21f1c83bf6c435ac9de61fd, doi:10.1016/j.scs.2023.104432.

[62]

M. Sobala. Assessment of the traditional landscapes' state in mountain areas as the basis for their restoration (the western beskids, poland). APPLIED GEOGRAPHY, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85174011725&doi=10.1016%2fj.apgeog.2023.103123&partnerID=40&md5=2e0acc0837bf56fe4b140569cdd2e1fc, doi:10.1016/j.apgeog.2023.103123.

[63]

M. Vojtas, J. Těsnohlídek, M. Prišťáková, J. Petřík, M. Fojtík, J. Zubalík, R. Kapavík, and P. Tajkov. Battlefield archaeology of the first world war in northeastern slovakia. Archaeologia Polona, 61:31–59, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85184217325&doi=10.23858%2fAPA61.2023.3362&partnerID=40&md5=a8e691aea7bcb7e5752dc7211e301ea7, doi:10.23858/APA61.2023.3362.

[64]

Y. Tian, A. Wang, S. Mora, P. Desouza, X. Yao, F. Duarte, H. Lin, and C. Ratti. Improving no2 prediction by integrating tree diversity, urban form, and scale sensitivity through mobile monitoring. APPLIED GEOGRAPHY, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150833136&doi=10.1016%2fj.apgeog.2023.102943&partnerID=40&md5=62a2fc2418921b6a43e8dbf17335104b, doi:10.1016/j.apgeog.2023.102943.

[65]

Victor D. Thompson. Considering urbanism at mound key (caalus), the capital of the calusa in the 16th century, southwest florida, usa. JOURNAL OF ANTHROPOLOGICAL ARCHAEOLOGY, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85171803228&doi=10.1016%2fj.jaa.2023.101546&partnerID=40&md5=74fa72430d762c1894974654732ecf43, doi:10.1016/j.jaa.2023.101546.

[66]

B. Štular, E. Lozić, and S. Eichert. Interpolation of airborne lidar data for archaeology. Journal of Archaeological Science: Reports, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146733762&doi=10.1016%2fj.jasrep.2023.103840&partnerID=40&md5=e1d89f8fb42a82d15e66d713a08fec59, doi:10.1016/j.jasrep.2023.103840.

[67]

J. W. Suh and W. Ouimet. Mapping stone walls in northeastern usa using deep learning and lidar data. GIScience and Remote Sensing, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152389672&doi=10.1080%2f15481603.2023.2196117&partnerID=40&md5=47989de82abec39c6a64f79e2d5792b3, doi:10.1080/15481603.2023.2196117.

[68]

J. G. Stauffer, S. B. Grooms, L. W. Hu, J. Mersmann, T. R. Kidder, and E. R. Henry. Reimagining the development of downtown cahokia using remote sensing visualizations from the western edge of the grand plaza. Land, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149252683&doi=10.3390%2fland12020342&partnerID=40&md5=20ea4e56ee70b207c1a16f22a20d94e8, doi:10.3390/land12020342.

[69]

L. Lu, P. Fu, A. Dewan, and Q. Li. Contrasting determinants of land surface temperature in three megacities: implications to cool tropical metropolitan regions. SUSTAINABLE CITIES AND SOCIETY, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150878965&doi=10.1016%2fj.scs.2023.104505&partnerID=40&md5=667701031c2fb23f3dbe56977858b6cf, doi:10.1016/j.scs.2023.104505.

[70]

Y. Tian, X. A. Yao, M. Madden, and A. Grundstein. Synergic effects of meteorological factors on urban form-outdoor exercise relationship: a study with crowdsourced data. Journal of Geographical Systems, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169606163&doi=10.1007%2fs10109-023-00424-x&partnerID=40&md5=714e0713dd97898091c11ca68feace9a, doi:10.1007/s10109-023-00424-x.

[71]

J. A. Comer, D. C. Comer, I. A. Dumitru, C. E. Priebe, and J. L. Patsolic. Sampling methods for archaeological predictive modeling: spatial autocorrelation and model performance. Journal of Archaeological Science: Reports, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148351272&doi=10.1016%2fj.jasrep.2022.103824&partnerID=40&md5=1f37ef7dacc0fcbd4441c5c86ac47434, doi:10.1016/j.jasrep.2022.103824.

[72]

M. Meliho, A. Khattabi, D. Zejli, and C. A. Orlando. Spatiotemporal prediction of daily air temperature using remote sensing and machine learning in morocco. THEORETICAL AND APPLIED CLIMATOLOGY, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85178144757&doi=10.1007%2fs00704-023-04759-9&partnerID=40&md5=6eb6152123320cd3a52ec38a9847edd9, doi:10.1007/s00704-023-04759-9.

[73]

N. Abate, D. Ronchi, V. Vitale, N. Masini, A. Angelini, F. Giuri, A. Minervino Amodio, A. M. Gennaro, and D. Ferdani. Integrated close range remote sensing techniques for detecting, documenting, and interpreting lost medieval settlements under canopy: the case of altanum (rc, italy). Land, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149237338&doi=10.3390%2fland12020310&partnerID=40&md5=3a0e63b298d62569bae744cd1969579b, doi:10.3390/land12020310.

[74]

S. Asadzadeh and C. R. Souza Filho. Numerical modeling of land surface temperature over complex geologic terrains: a remote sensing approach. Remote Sensing, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85174165895&doi=10.3390%2frs15194877&partnerID=40&md5=559de0395303f310047f250ef2956b7a, doi:10.3390/rs15194877.

[75]

J. Berthe, A. Devos, O. Lejeune, N. Bollot, G. Fronteau, R. Perarnau, and S. Ortonovi. Contribution of airborne lidar on the understanding of exokarstification factors in a low plateau context, example of the montagne de reims (france). Geomorphologie: Relief, Processus, Environnement, 28(4):207–221, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161188319&doi=10.4000%2fgeomorphologie.16829&partnerID=40&md5=881f16077e25c70d1362ecf0a5150707, doi:10.4000/geomorphologie.16829.

[76]

F. Bernardini, M. Pipan, E. Forte, E. Leghissa, M. Calosi, S. Furlani, S. Hunter Broking, R. Loiacono, and V. Macovaz. Trmun (north-eastern italy): multi-scale remote and ground-based sensing of a bronze age and post-roman fortification. Journal of Archaeological Science: Reports, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85167985398&doi=10.1016%2fj.jasrep.2023.104108&partnerID=40&md5=afd3f1b72af031bdfd382d4ae057d6a6, doi:10.1016/j.jasrep.2023.104108.

[77]

R. Brancato, C. Lamanna, V. Mirto, and L. Manganelli. Digital technologies and the archaeological topography of castellito (sicily): the reconstruction of a roman villa. ARCHEOLOGIA E CALCOLATORI, 34(2):185–206, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182773692&doi=10.19282%2fac.34.2.2023.10&partnerID=40&md5=e522644bb1b24768a750463de126d12d, doi:10.19282/ac.34.2.2023.10.

[78]

C. Brașoveanu, A. Mihu-Pintilie, and R.-A. Brunchi. Inside late bronze age settlements in ne romania: gis-based surface characterization of ashmound structures using airborne laser scanning and aerial photography techniques. Remote Sensing, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85170361622&doi=10.3390%2frs15174124&partnerID=40&md5=5da8e0e087709c087ad195eba27e8e32, doi:10.3390/rs15174124.

[79]

N. Anttiroiko, F. J. Groesz, J. Ikäheimo, A. Kelloniemi, R. Nurmi, S. Rostad, and O. Seitsonen. Detecting the archaeological traces of tar production kilns in the northern boreal forests based on airborne laser scanning and deep learning. Remote Sensing, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152768915&doi=10.3390%2frs15071799&partnerID=40&md5=745da963383a7199506dbab6b42714f9, doi:10.3390/rs15071799.

[80]

C. Chen, H. Bagan, and T. Yoshida. Multiscale mapping of local climate zones in tokyo using airborne lidar data, gis vectors, and sentinel-2 imagery. GIScience and Remote Sensing, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159805853&doi=10.1080%2f15481603.2023.2209970&partnerID=40&md5=48599be89e10c90beef66143a0dd8a38, doi:10.1080/15481603.2023.2209970.

[81]

Z. Cheng, J. M. Chen, Z. Guo, G. Miao, H. Zeng, R. Wang, Z. Huang, and Y. Wang. Improving uav-based lai estimation for forests over complex terrain by reducing topographic effects on multispectral reflectance. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 62:1–19, 2024. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179083406&doi=10.1109%2fTGRS.2023.3337177&partnerID=40&md5=a9fb790affaaa5de6a0db56c0594f15e, doi:10.1109/TGRS.2023.3337177.

[82]

J. Aldrighettoni and M. G. D'Urso. Military archaeology and lidar data visualizations: a non-invasive approach to detect historical remains. Acta IMEKO, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164967947&doi=10.21014%2factaimeko.v12i2.1395&partnerID=40&md5=b138062be54a012e8d659fb480b56ac3, doi:10.21014/actaimeko.v12i2.1395.

[83]

H.-K. Ahn, K.-J. Oh, and Y.-J. Cho. Case study of a korean archaeological survey using lidar. International Journal of Korean History, 28(1):99–141, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85151429675&doi=10.22372%2fijkh.2023.28.1.99&partnerID=40&md5=43cb250936c4d2193c4a640bdc780661, doi:10.22372/ijkh.2023.28.1.99.

[84]

F. Bernardini. Rediscovering the lost roman landscape in the southern trieste karst (north-eastern italy): road network, land divisions, rural buildings and new hints on the avesica road station. Remote Sensing, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85151146311&doi=10.3390%2frs15061506&partnerID=40&md5=755355c10629dafd9e716e06d4779171, doi:10.3390/rs15061506.

[85]

I. Berganzo-Besga, H. A. Orengo, J. Canela, and M. C. Belarte. Potential of multitemporal lidar for the detection of subtle archaeological features under perennial dense forest. Land, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149491459&doi=10.3390%2fland11111964&partnerID=40&md5=952319f22d54cfb1d3e86222a7d5c3b4, doi:10.3390/land11111964.

[86]

A. Campiani, S. McAvoy, N. Lercari, R. Liendo Stuardo, G. Jiménez Delgado, J. López Mejía, D. Rissolo, and F. Kuester. Developing an interoperable cloud-based visualization workflow for 3d archaeological heritage data: the palenque 3d archaeological atlas. Digital Applications in Archaeology and Cultural Heritage, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85173528903&doi=10.1016%2fj.daach.2023.e00293&partnerID=40&md5=4b39867516ee7edd364beed922d851fc, doi:10.1016/j.daach.2023.e00293.

[87]

G. Caspari. The potential of new lidar datasets for archaeology in switzerland. Remote Sensing, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85151479441&doi=10.3390%2frs15061569&partnerID=40&md5=3626989291e8da718c0cef1735c64e11, doi:10.3390/rs15061569.

[88]

I. Basista, E. Dębińska, K. Kozioł, J. Czerniec, and M. Sosnowski. Micro-morphological analyses of digital terrain model in search of traces of ploughing on archaeological objects. International Journal of Conservation Science, 14(1):131–158, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159810751&doi=10.36868%2fIJCS.2023.01.10&partnerID=40&md5=1a9da056f8efb580f672be350b4efd1a, doi:10.36868/IJCS.2023.01.10.

[89]

R. Bi, S. Gan, X. Yuan, R. Li, S. Gao, M. Yang, W. Luo, and L. Hu. Multi-view analysis of high-resolution geomorphic features in complex mountains based on uav–lidar and sfm–mvs: a case study of the northern pit rim structure of the mountains of lufeng, china. Applied Sciences (Switzerland), 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146644920&doi=10.3390%2fapp13020738&partnerID=40&md5=b5c3b6fe578ec0b85e94a638a5cc475e, doi:10.3390/app13020738.

[90]

Andrzej Affek. Past carpathian landscapes recorded in the microtopography. GEOGRAPHIA POLONICA, 89(3):415–424, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84989283172&doi=10.7163%2fGPol.0062&partnerID=40&md5=47c41674f6516fba0c9e78377ba9b2e5, doi:10.7163/GPol.0062.

[91]

Andrzej Norbert Affek, Maria Zachwatowicz, Agnieszka Sosnowska, Alina Gerlée, and Krzysztof Kiszka. Impacts of modern mechanised skidding on the natural and cultural heritage of the polish carpathian mountains. FOREST ECOLOGY AND MANAGEMENT, 405:391–403, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030472101&doi=10.1016%2fj.foreco.2017.09.047&partnerID=40&md5=19ad50c4bc2f2318a4b70c90f20ec59b, doi:10.1016/j.foreco.2017.09.047.

[92]

A. N. Affek, J. Wolski, A. Latocha, M. Zachwatowicz, and M. Wieczorek. The use of lidar in reconstructing the pre-world war ii landscapes of abandoned mountain villages in southern poland. Archaeological Prospection, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115824622&doi=10.1002%2farp.1846&partnerID=40&md5=8bddc14f7ff3498041059fd406f3a263, doi:10.1002/arp.1846.

[93]

Z. Alvyar, F. Shahbazi, S. Oustan, O. Dengiz, and B. Minasny. Digital mapping of potentially toxic elements enrichment in soils of urmia lake due to water level decline. SCIENCE OF THE TOTAL ENVIRONMENT, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120804478&doi=10.1016%2fj.scitotenv.2021.152086&partnerID=40&md5=a692ce37f50cabd4cf40015fee4f35e4, doi:10.1016/j.scitotenv.2021.152086.

[94]

S. M. An, B. S. Kim, H. Y. Lee, C. H. Kim, C. Y. Yi, J. H. Eum, and J. H. Woo. Three-dimensional point cloud based sky view factor analysis in complex urban settings. International Journal of Climatology, 34(8):2685–2701, 2014. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84902658594&doi=10.1002%2fjoc.3868&partnerID=40&md5=ff05eb4ec4882da15b4a218b30d27d4d, doi:10.1002/joc.3868.

[95]

B. Antunes, C. Figueiredo-Vázquez, K. Dudek, M. Liana, M. Pabijan, P. Zieliński, and W. Babik. Landscape genetics reveals contrasting patterns of connectivity in two newt species (lissotriton montandoni and l. vulgaris). Molecular Ecology, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131638691&doi=10.1111%2fmec.16543&partnerID=40&md5=fbf23c83995bfe32eed6d16dc792a411, doi:10.1111/mec.16543.

[96]

Anahita Asadi, Hossein Arefi, and Hafez Fathipoor. Simulation of green roofs and their potential mitigating effects on the urban heat island using an artificial neural network: a case study in austin, texas. Advances in Space Research, 66(8):1846–1862, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089143121&doi=10.1016%2fj.asr.2020.06.039&partnerID=40&md5=bd55a0bc3dfb48d46187b2026c1c018b, doi:10.1016/j.asr.2020.06.039.

[97]

Andrei Asăndulesei. Inside a cucuteni settlement: remote sensing techniques for documenting an unexplored eneolithic site from northeastern romania. Remote Sensing, 9(1):41, 2017. doi:10.3390/rs9010041.

[98]

Nigel Atkinson, Daniel J. Utting, and Steven M. Pawley. Landform signature of the laurentide and cordilleran ice sheets across alberta during the last glaciation. CANADIAN JOURNAL OF EARTH SCIENCES, 51(12):1067–1083, 2014. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84919388104&doi=10.1139%2fcjes-2014-0112&partnerID=40&md5=9c2c9dde68caa88daa55153f51a857c7, doi:10.1139/cjes-2014-0112.

[99]

Łukasz Banaszek, Dave Cowley, and Mike Middleton. Towards national archaeological mapping. assessing source data and methodology—a case study from scotland. Geosciences (Switzerland), 8(8):272, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051021501&doi=10.3390%2fgeosciences8080272&partnerID=40&md5=e8bcac74228741cc8fc1479bc0cf189b, doi:10.3390/geosciences8080272.

[100]

Łukasz Banaszek. It takes all kinds of trees to make a forest. using historic maps and forestry data to inform airborne laser scanning based archaeological prospection in woodland. Archaeological Prospection, 27(4):377–392, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085603988&doi=10.1002%2farp.1780&partnerID=40&md5=3ee77cb73d221e0879c22967507d1bd6, doi:10.1002/arp.1780.

[101]

Elena Barbierato, Iacopo Bernetti, Irene Capecchi, and Claudio Saragosa. Quantifying the impact of trees on land surface temperature: a downscaling algorithm at city-scale. European Journal of Remote Sensing, 52(sup4):74–83, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070261286&doi=10.1080%2f22797254.2019.1646104&partnerID=40&md5=261e3cdda3cf1e8459b81ffa8d1b368d, doi:10.1080/22797254.2019.1646104.

[102]

P. Barruezo-Vaquero, A. Dorado Alejos, J. A. Cámara Serrano, A. M. Ruíz, and F. M. González. Digitizing los millares (santa fe de mondujar, almería, spain) through 3-d and geospatial technologies: preserving and disseminating the archaeological heritage. Digital Applications in Archaeology and Cultural Heritage, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142180817&doi=10.1016%2fj.daach.2022.e00247&partnerID=40&md5=6db2940d4ff1236675efd21e244d6bf0, doi:10.1016/j.daach.2022.e00247.

[103]

Carlos Bartesaghi Koc, Paul Osmond, Alan Peters, and Matthias Irger. Understanding land surface temperature differences of local climate zones based on airborne remote sensing data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(8):2724–2730, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045676804&doi=10.1109%2fJSTARS.2018.2815004&partnerID=40&md5=cdee346a9d5a03f9e113f14523d9378a, doi:10.1109/JSTARS.2018.2815004.

[104]

C. Bartesaghi-Koc, P. Osmond, and A. Peters. Innovative use of spatial regression models to predict the effects of green infrastructure on land surface temperatures. Energy and Buildings, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119070057&doi=10.1016%2fj.enbuild.2021.111564&partnerID=40&md5=34c8a81fc09fcfa00070b1a2a39b84e3, doi:10.1016/j.enbuild.2021.111564.

[105]

Timothy Beach, Sheryl Luzzadder-Beach, Samantha Krause, Tom Guderjan, Fred Valdez, Juan Carlos Fernandez-Diaz, Sara Eshleman, and Colin Doyle. Ancient maya wetland fields revealed under tropical forest canopy from laser scanning and multiproxy evidence. Proceedings of the National Academy of Sciences of the United States of America, 116(43):21469–21477, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073738764&doi=10.1073%2fpnas.1910553116&partnerID=40&md5=88a1859f49a1c0727d48b1fc7bd08d86, doi:10.1073/pnas.1910553116.

[106]

Anton Beloconi, Yiannis Kamarianakis, and Nektarios Chrysoulakis. Estimating urban pm10 and pm2.5 concentrations, based on synergistic meris/aatsr aerosol observations, land cover and morphology data. REMOTE SENSING OF ENVIRONMENT, 172:148–164, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84947551513&doi=10.1016%2fj.rse.2015.10.017&partnerID=40&md5=917dbe554523f6c4421dbb74a1161d27, doi:10.1016/j.rse.2015.10.017.

[107]

Rebecca Bennett, Kate Welham, Ross a. Hill, and Andrew Ford. A comparison of visualization techniques for models created from airborne laser scanned data. Archaeological Prospection, 19(1):41–48, 2012. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84858007655&doi=10.1002%2farp.1414&partnerID=40&md5=c1a0000033a95a27a346e3819cc81432, doi:10.1002/arp.1414.

[108]

V. Berezowski, I. Moffat, Y. Shendryk, D. MacGregor, J. Ellis, and X. Mallett. A multidisciplinary approach to locating clandestine gravesites in cold cases: combining geographic profiling, lidar, and near surface geophysics. Forensic Science International: Synergy, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135712785&doi=10.1016%2fj.fsisyn.2022.100281&partnerID=40&md5=0a9674f686650934c2e4a2525ff64e22, doi:10.1016/j.fsisyn.2022.100281.

[109]

I. Berganzo-Besga, H. A. Orengo, F. Lumbreras, M. Carrero-Pazos, J. Fonte, and B. Vilas-Estévez. Hybrid msrm-based deep learning and multitemporal sentinel 2-based machine learning algorithm detects near 10k archaeological tumuli in north-western iberia. Remote Sensing, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85118223117&doi=10.3390%2frs13204181&partnerID=40&md5=145d31b220e2978f6c8f17190e3ea28d, doi:10.3390/rs13204181.

[110]

C. Berger, J. Rosentreter, M. Voltersen, C. Baumgart, C. Schmullius, and S. Hese. Spatio-temporal analysis of the relationship between 2d/3d urban site characteristics and land surface temperature. REMOTE SENSING OF ENVIRONMENT, 193:225–243, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015377927&doi=10.1016%2fj.rse.2017.02.020&partnerID=40&md5=acad91e4335a7f918f78925c0d0912e1, doi:10.1016/j.rse.2017.02.020.

[111]

Federico Bernardini and Giacomo Vinci. Archaeological landscape in central northern istria (croatia) revealed by airborne lidar: from prehistoric sites to roman centuriation. ARCHAEOLOGICAL AND ANTHROPOLOGICAL SCIENCES, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086372298&doi=10.1007%2fs12520-020-01070-w&partnerID=40&md5=5610c090479e0d7367ea21e31c38ecc5, doi:10.1007/s12520-020-01070-w.

[112]

Miloud Bessafi, Vishwamitra Oree, Abdel Khoodaruth, Guillaume Jumaux, François Bonnardot, Patrick Jeanty, Mathieu Delsaut, Jean-Pierre Chabriat, and Muhammad Zaid Dauhoo. Downscaling solar irradiance using dem-based model in young volcanic islands with rugged topography. RENEWABLE ENERGY, 126:584–593, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047501513&doi=10.1016%2fj.renene.2018.03.071&partnerID=40&md5=7ae87804c6ae7c1868b392d366c139ce, doi:10.1016/j.renene.2018.03.071.

[113]

C. Bettineschi, L. Magnini, G. Azzalin, and A. de Guio. Clearence cairnfields forever: combining ai and lidar data in the marcesina upland (northern italy). European Journal of Post-Classical Archaeologies, 12:49–68, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140493250&partnerID=40&md5=ecd1dcd7575ab5e61b4c080f1c8dfe8f.

[114]

P. Bisták, J. Zachar, A. Rášová, T. Lieskovský, I. Kravjanská, M. Orosová, K. Krocková, and M. Felcan. Archaeological digital archiving in heritage management in slovakia. Internet Archaeology, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122590914&doi=10.11141%2fia.58.16&partnerID=40&md5=5a495d9e933220bf211b8bd06091f922, doi:10.11141/ia.58.16.

[115]

Peter Bobáľ, Slavomír Sipina, and Filip Škultéty. Aspects of aerial laser scanning when exploring unknown archaeological sites (case study). Transportation Research Procedia, 28:37–44, 2017. doi:10.1016/j.trpro.2017.12.166.

[116]

Alexander Bonhage, Florian Hirsch, Thomas Raab, Anna Schneider, Alexandra Raab, and Will Ouimet. Characteristics of small anthropogenic landforms resulting from historical charcoal production in western connecticut, usa. CATENA, 195:104896, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091390891&doi=10.1016%2fj.catena.2020.104896&partnerID=40&md5=50352ae4eeee95e9cc2bba52926ba12a, doi:10.1016/j.catena.2020.104896.

[117]

Alexander Bonhage, Mahmoud Eltaher, Thomas Raab, Michael Breuß, Alexandra Raab, and Anna Schneider. A modified mask region–based convolutional neural network approach for the automated detection of archaeological sites on high–resolution light detection and ranging–derived digital elevation models in the north german lowland. Archaeological Prospection, 28(2):177–186, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100307716&doi=10.1002%2farp.1806&partnerID=40&md5=b07a74dcc9585d2088fe2bd717f2af9d, doi:10.1002/arp.1806.

[118]

Marek Bundzel, Miroslav Jaščur, Milan Kováč, Tibor Lieskovský, Peter Sinčák, and Tomáš Tkáčik. Semantic segmentation of airborne lidar data in maya archaeology. Remote Sensing, 12(22):3685, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096102892&doi=10.3390%2frs12223685&partnerID=40&md5=163897c439ef6ea5f95161ec89125efe, doi:10.3390/rs12223685.

[119]

J. Buridant, C. Pichard, and E. Gallet-Moron. Use of lidar technology for archaeological and geo-historical knowledge: french examples. Transylvanian Review, 29:291–305, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090783893&partnerID=40&md5=ff19034bc57750bf2caa562e038d3de3.

[120]

Laura Burigana and Luigi Magnini. Image processing and analysis of radar and lidar data: new discoveries in verona southern lowland (italy). SCIENCE AND TECHNOLOGY OF ARCHAEOLOGICAL RESEARCH, 3(2):490–509, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057157061&doi=10.1080%2f20548923.2018.1426273&partnerID=40&md5=ef065b5f3558219ef6c67c6dd1a8ccaa, doi:10.1080/20548923.2018.1426273.

[121]

J. Caha. Line of sight analyst: arcgis python toolbox for visibility analyses. Geographia Cassoviensis, 12(1):5–15, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050815135&partnerID=40&md5=f4fb740c76f5e4ff31c592be07d39ab9.

[122]

Marcello A. Canuto, Francisco Estrada-Belli, Thomas G. Garrison, Stephen D. Houston, Mary Jane Acuña, Milan Kováč, Damien Marken, Philippe Nondédéo, Luke Auld-Thomas, Cyril Castanet, David Chatelain, Carlos R. Chiriboga, Tomáš Drápela, Tibor Lieskovský, Alexandre Tokovinine, Antolín Velasquez, Juan C. Fernández-Díaz, and Ramesh Shrestha. Ancient lowland maya complexity as revealed by airborne laser scanning of northern guatemala. Science, 2018. doi:10.1126/science.aau0137.

[123]

Shisong Cao, Mingyi Du, Wenji Zhao, Yungang Hu, You Mo, Shanshan Chen, Yile Cai, Ziqiang Peng, and Chaoyi Zhang. Multi-level monitoring of three-dimensional building changes for megacities: trajectory, morphology, and landscape. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 167:54–70, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087859016&doi=10.1016%2fj.isprsjprs.2020.06.020&partnerID=40&md5=f05a3e2d711a6a72c1c3fc53da38723a, doi:10.1016/j.isprsjprs.2020.06.020.

[124]

Shisong Cao, Qihao Weng, Mingyi Du, Bing Li, Ruofei Zhong, and You Mo. Multi-scale three-dimensional detection of urban buildings using aerial lidar data. GIScience and Remote Sensing, 57(8):1125–1143, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096343023&doi=10.1080%2f15481603.2020.1847453&partnerID=40&md5=33292fce35508bacb370c517b1e2c8b2, doi:10.1080/15481603.2020.1847453.

[125]

Qian Cao, Qingzu Luan, Yupeng Liu, and Renqing Wang. The effects of 2d and 3d building morphology on urban environments: a multi-scale analysis in the beijing metropolitan region. BUILDING AND ENVIRONMENT, 192:107635, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099859571&doi=10.1016%2fj.buildenv.2021.107635&partnerID=40&md5=0fa381f562b32269602a8694b9a651e0, doi:10.1016/j.buildenv.2021.107635.

[126]

Rosa M. Carrasco, Rodrigo L. Soteres, Javier Pedraza, Javier Fernández-Lozano, Valentí Turu, José Antonio López-Sáez, Theodoros Karampaglidis, José Luis Granja-Bruña, and Alfoso Muñoz-Martín. Glacial geomorphology of the high gredos massif: gredos and pinar valleys (iberian central system, spain). Journal of Maps, 16(2):790–804, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094869879&doi=10.1080%2f17445647.2020.1833768&partnerID=40&md5=924e56a9df9fd13442721541a59f282c, doi:10.1080/17445647.2020.1833768.

[127]

Miguel Carrero-Pazos, Alia Vázquez-Martínez, and Benito Vilas-Estévez. Astrend: towards a new method for the study of ancient carvings. Journal of Archaeological Science: Reports, 9:105–119, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84979030916&doi=10.1016%2fj.jasrep.2016.06.044&partnerID=40&md5=7e3f6a5199d78b97535730f3fe42c4c2, doi:10.1016/j.jasrep.2016.06.044.

[128]

M. Carrero-Pazos. Visibility as a locational factor in the megaliths of southern galicia. Zephyrus, 87:63–81, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109601394&doi=10.14201%2fZEPHYRUS2021876381&partnerID=40&md5=677846b944619b1a67cd90a51a44b5cc, doi:10.14201/ZEPHYRUS2021876381.

[129]

Jesse Casana, Elise Jakoby Laugier, Austin Chad Hill, and Donald Blakeslee. A council circle at etzanoa? multi-sensor drone survey at an ancestral wichita settlement in southeastern kansas. American Antiquity, 85(4):761–780, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85093525387&doi=10.1017%2faaq.2020.49&partnerID=40&md5=30e39072aa0907904c0d9f336259a7f9, doi:10.1017/aaq.2020.49.

[130]

J. Casana, E. J. Laugier, A. C. Hill, K. M. Reese, C. Ferwerda, M. D. McCoy, and T. Ladefoged. Exploring archaeological landscapes using drone-acquired lidar: case studies from hawai'i, colorado, and new hampshire, usa. Journal of Archaeological Science: Reports, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113661723&doi=10.1016%2fj.jasrep.2021.103133&partnerID=40&md5=86ffbd37fb7bdbfbf8273f91e223e9b7, doi:10.1016/j.jasrep.2021.103133.

[131]

Keith Challis, Paolo Forlin, and Mark Kincey. A generic toolkit for the visualization of archaeological features on airborne lidar elevation data. Archaeological Prospection, 18(4):279–289, 2011. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80051887600&doi=10.1002%2farp.421&partnerID=40&md5=388cac4342c58b79fbf0bf49cbaf685c, doi:10.1002/arp.421.

[132]

Samuel N. Chambers, Geoffrey Alan Boyce, and W. Jake Jacobs. Constructing a desert labyrinth: the psychological and emotional geographies of deterrence strategy on the u.s. / mexico border. Emotion, Space and Society, 38:100764, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100197874&doi=10.1016%2fj.emospa.2021.100764&partnerID=40&md5=663c9726044eb266218db5b291726a3e, doi:10.1016/j.emospa.2021.100764.

[133]

Adrian S. Z. Chase. Beyond elite control: residential reservoirs at caracol, belize. Wiley Interdisciplinary Reviews: Water, 3(6):885–897, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016780545&doi=10.1002%2fwat2.1171&partnerID=40&md5=de52dd07f90007589d579902cf5c1512, doi:10.1002/wat2.1171.

[134]

Chuanfa Chen and Yanyan Li. A fast global interpolation method for digital terrain model generation from large lidar-derived data. Remote Sensing, 11(11):1324, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067388732&doi=10.3390%2frs11111324&partnerID=40&md5=bf621b1b897b59b7f8e80ee57669d658, doi:10.3390/rs11111324.

[135]

Q. Chen, Q. Cheng, Y. Chen, K. Li, D. Wang, and S. Cao. The influence of sky view factor on daytime and nighttime urban land surface temperature in different spatial-temporal scales: a case study of beijing. Remote Sensing, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117267569&doi=10.3390%2frs13204117&partnerID=40&md5=03fff992554335d8e3e251a5c652cdb9, doi:10.3390/rs13204117.

[136]

C. Chen, H. Bagan, T. Yoshida, H. Borjigin, and J. Gao. Quantitative analysis of the building-level relationship between building form and land surface temperature using airborne lidar and thermal infrared data. URBAN CLIMATE, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135578613&doi=10.1016%2fj.uclim.2022.101248&partnerID=40&md5=d60d41cf19ea8726ef090d5768bfdc4b, doi:10.1016/j.uclim.2022.101248.

[137]

X. Chen, Z. Wang, Y. Bao, Q. Luo, and W. Wei. Combined impacts of buildings and urban remnant mountains on thermal environment in multi-mountainous city. SUSTAINABLE CITIES AND SOCIETY, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139596343&doi=10.1016%2fj.scs.2022.104247&partnerID=40&md5=8a51406ce38fee60f78dfb3b03d808a5, doi:10.1016/j.scs.2022.104247.

[138]

Emmanuel Chevigny, Laure Saligny, Ludovic Granjon, Dominique Goguey, Alexandra Cordier, Yves Pautrat, and Alain Giosa. Identifier et enregistrer des vestiges archéologiques sous couvert forestier à partir de données lidar : méthode et limites. ArcheoSciences, 42(2018):31–43, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064679283&doi=10.4000%2farcheosciences.5727&partnerID=40&md5=3d3816bece0feadbf66b20f40c2d0915, doi:10.4000/archeosciences.5727.

[139]

Francis Choi, Tarik Gouhier, Fernando Lima, Gil Rilov, Rui Seabra, and Brian Helmuth. Mapping physiology: biophysical mechanisms define scales of climate change impacts. CONSERVATION PHYSIOLOGY, 7(1):coz028, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082705736&doi=10.1093%2fconphys%2fcoz028&partnerID=40&md5=6c4b258e7f65914a06ab650de96bacc3, doi:10.1093/conphys/coz028.

[140]

František Chudý, Martina Slámová, Julián Tomaštík, Roberta Prokešová, and Martin Mokroš. Identification of micro-scale landforms of landslides using precise digital elevation models. Geosciences (Switzerland), 9(3):117, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065247438&doi=10.3390%2fgeosciences9030117&partnerID=40&md5=8c0f2c4f54ccb238c77b87d451e3b210, doi:10.3390/geosciences9030117.

[141]

Bumseok Chun and Subhrajit Guhathakurta. Daytime and nighttime urban heat islands statistical models for atlanta. Environment and Planning B: Urban Analytics and City Science, 44(2):308–327, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028619116&doi=10.1177%2f0265813515624685&partnerID=40&md5=c6841ec4e5d4a53f9c59a47dde9447f7, doi:10.1177/0265813515624685.

[142]

Bumseok Chun and Subhrajit Guhathakurta. The impacts of three-dimensional surface characteristics on urban heat islands over the diurnal cycle. PROFESSIONAL GEOGRAPHER, 69(2):191–202, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84983507774&doi=10.1080%2f00330124.2016.1208102&partnerID=40&md5=1611b9f9dba565bbc3ad08b64d2141c5, doi:10.1080/00330124.2016.1208102.

[143]

Bumseok Chun and Jean-Michel Guldmann. Impact of greening on the urban heat island: seasonal variations and mitigation strategies. Computers, Environment and Urban Systems, 71:165–176, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047260094&doi=10.1016%2fj.compenvurbsys.2018.05.006&partnerID=40&md5=8a8ebdac70527c5b876a9a33035c0f80, doi:10.1016/j.compenvurbsys.2018.05.006.

[144]

Douglas C. Comer, Jacob A. Comer, Ioana A. Dumitru, William S. Ayres, Maureece J. Levin, Katherine A. Seikel, Devin A. White, and Michael J. Harrower. Airborne lidar reveals a vast archaeological landscape at the nan madol world heritage site. Remote Sensing, 11(18):2152, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072648611&doi=10.3390%2frs11182152&partnerID=40&md5=594bf680634884d70a644d81e5e5eba7, doi:10.3390/rs11182152.

[145]

Š. Čonč, T. Oliveira, R. Portas, R. Černe, M. B. Valjavec, and M. Krofel. Dolines and cats: remote detection of karst depressions and their application to study wild felid ecology. Remote Sensing, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123702795&doi=10.3390%2frs14030656&partnerID=40&md5=fa61a352955ae147b9a2323aca372721, doi:10.3390/rs14030656.

[146]

J-M. Costa-García, J. Fonte, and M. Gago. The reassessment of the roman military presence in galicia and northern portugal through digital tools: archaeological diversity and historical problems. Mediterranean Archaeology and Archaeometry, 19(3):17–49, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074189897&doi=10.5281%2fzenodo.3457524&partnerID=40&md5=8fbe14f86150f46777e56be25efb4abb, doi:10.5281/zenodo.3457524.

[147]

Dave Cowley, Geert Verhoeven, and Arianna Traviglia. Editorial for special issue: “archaeological remote sensing in the 21st century: (re)defining practice and theory”. Remote Sensing, 13(8):1431, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104670340&doi=10.3390%2frs13081431&partnerID=40&md5=518bb3c88f1b052cf1c2409d520e2e26, doi:10.3390/rs13081431.

[148]

Kieran F. Craven, Stephen McCarron, Xavier Monteys, and Dayton Dove. Interaction of multiple ice streams on the malin shelf during deglaciation of the last british–irish ice sheet. JOURNAL OF QUATERNARY SCIENCE, 36(2):153–168, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099651939&doi=10.1002%2fjqs.3266&partnerID=40&md5=0ad35407676525443a250b2775d9c86d, doi:10.1002/jqs.3266.

[149]

B. X. Currás Refojos, E. Martín-Hernández, L. F. López-González, and J. G. Castro. Two possible roman camps in the province of lugo: criticism and praise of the archaeological news. Archivo Espanol de Arqueologia, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113800928&doi=10.3989%2fAESPA.094.021.13&partnerID=40&md5=fd7bdce6de10b016a5d1771c4f0cbeb5, doi:10.3989/AESPA.094.021.13.

[150]

M. Danese, D. Gioia, V. Vitale, N. Abate, A. M. Amodio, R. Lasaponara, and N. Masini. Pattern recognition approach and lidar for the analysis and mapping of archaeological looting: application to an etruscan site. Remote Sensing, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127741392&doi=10.3390%2frs14071587&partnerID=40&md5=a7634fd995d7d3629c3dee35ddd64082, doi:10.3390/rs14071587.

[151]

B. Dang, Y. Liu, H. Lyu, X. Zhou, W. Du, C. Xuan, P. Xing, R. Yang, and F. Xiong. Assessment of urban climate environment and configuration of ventilation corridor: a refined study in xi'an. Journal of Meteorological Research, 36(6):914–930, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146134905&doi=10.1007%2fs13351-022-2035-0&partnerID=40&md5=73e43497ceda7896c2bba97ca3834b92, doi:10.1007/s13351-022-2035-0.

[152]

Peter Davies, Jodi Turnbull, and Susan Lawrence. Remote sensing landscapes of water management on the victorian goldfields, australia. Journal of Archaeological Science, 76:48–55, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994663246&doi=10.1016%2fj.jas.2016.10.009&partnerID=40&md5=c577d9e1b96dd43304276c11ce2d34a2, doi:10.1016/j.jas.2016.10.009.

[153]

John R. Davis, Erik Brubaker, and Kai Vetter. Fast neutron background characterization with the radiological multi-sensor analysis platform (radmap). Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 858:106–112, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017129383&doi=10.1016%2fj.nima.2017.03.042&partnerID=40&md5=705ae606823a39d9f58dcf3ec3ef84e1, doi:10.1016/j.nima.2017.03.042.

[154]

Catherine A. Delaney, Stephen McCarron, and Stephen Davis. Irish ice sheet dynamics during deglaciation of the central irish midlands: evidence of ice streaming and surging from airborne lidar. Geomorphology, 306:235–253, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044651596&doi=10.1016%2fj.geomorph.2018.01.011&partnerID=40&md5=0e1c4919b923da605c88253fbe533ccb, doi:10.1016/j.geomorph.2018.01.011.

[155]

C. Delaney. The development and impact of an ice-contact proglacial lake during the last glacial termination, palaeolake riada, central ireland. JOURNAL OF QUATERNARY SCIENCE, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125837349&doi=10.1002%2fjqs.3412&partnerID=40&md5=610dc3fc2a57a8dd7cf7204f362c0dff, doi:10.1002/jqs.3412.

[156]

Y. Di, D. Hu, M. Liu, S. Chen, C. Yu, and Y. Wang. Radiation correction considering geometric effect of urban area and its application in temperature retrieval through remote sensing. Yaogan Xuebao/Journal of Remote Sensing, 25(8):1821–1835, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115274404&doi=10.11834%2fjrs.20211167&partnerID=40&md5=01c94ac1907b381a770eb10ca50c89f4, doi:10.11834/jrs.20211167.

[157]

Ana Djuricic, Peter Dorninger, Clemens Nothegger, Mathias Harzhauser, Balázs Székely, Sascha Rasztovits, Oleg Mandic, Gábor Molnár, and Norbert Pfeifer. High-resolution 3d surface modeling of a fossil oyster reef. GEOSPHERE, 12(5):1457–1477, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053361419&doi=10.1130%2fGES01282.1&partnerID=40&md5=1ba8a2c2c29c691cbc1ceb15153f6871, doi:10.1130/GES01282.1.

[158]

S. Dominika, Bartłomiej, W. Krzysztof, P. B. Dąbek, J. M. Bastante, and W. Izabela. Inca water channel flow analysis based on 3d models from terrestrial and uav laser scanning at the chachabamba archaeological site (machu picchu national archaeological park, peru). Journal of Archaeological Science, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119251321&doi=10.1016%2fj.jas.2021.105515&partnerID=40&md5=edf3ec5060d8eea62a3ba195cd81c91e, doi:10.1016/j.jas.2021.105515.

[159]

Michael Doneus. Openness as visualization technique for interpretative mapping of airborne lidar derived digital terrain models. Remote Sensing, 5(12):6427–6442, 2013. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84891448248&doi=10.3390%2frs5126427&partnerID=40&md5=a055024abca69dff73bbc0f580d7ec71, doi:10.3390/rs5126427.

[160]

Michael Doneus, Nives Doneus, Christian Briese, Michael Pregesbauer, Gottfried Mandlburger, and Geert Verhoeven. Airborne laser bathymetry – detecting and recording submerged archaeological sites from the air. Journal of Archaeological Science, 40(4):2136–2151, 2013. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84873815454&doi=10.1016%2fj.jas.2012.12.021&partnerID=40&md5=e7da88b92dcf5698a43eed2278a9f9f1, doi:10.1016/j.jas.2012.12.021.

[161]

Nives Doneus, Michael Doneus, and Zrinka Ettinger-Starčić. The ancient city of osor, northern adriatic, in integrated archaeological prospection. Hortus Artium Mediaevalium, 23(2):761–775, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021902028&doi=10.1484%2fJ.HAM.5.113761&partnerID=40&md5=21c706c1bbcadfd08ef13416816dfe0a, doi:10.1484/J.HAM.5.113761.

[162]

M. Doneus, Ł. Banaszek, and G. J. Verhoeven. The impact of vegetation on the visibility of archaeological features in airborne laser scanning datasets from different acquisition dates. Remote Sensing, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124792518&doi=10.3390%2frs14040858&partnerID=40&md5=2cfc63f82dc8e698677afe209be0d0ad, doi:10.3390/rs14040858.

[163]

M. Doneus, B. Höfle, D. Kempf, G. Daskalakis, and M. Shinoto. Human-in-the-loop development of spatially adaptive ground point filtering pipelines—an archaeological case study. Archaeological Prospection, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137461623&doi=10.1002%2farp.1873&partnerID=40&md5=b6bcf6912a152ea0438202b083b65bef, doi:10.1002/arp.1873.

[164]

M. Doneus, N. Doneus, and D. Cowley. Confronting complexity: interpretation of a dry stone walled landscape on the island of cres, croatia. Land, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140871755&doi=10.3390%2fland11101672&partnerID=40&md5=480fbaf219a730575eec4c2abb1f5a5d, doi:10.3390/land11101672.

[165]

A. Dorison. Ancient agriculture on lava flows: using lidar and soil science to reassess pre-hispanic farming on malpaís landforms in west mexico. Journal of Ethnobiology, 42(2):131–151, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134747852&doi=10.2993%2f0278-0771-42.2.131&partnerID=40&md5=0fb71713444f7a12045c73b4b3c63ef1, doi:10.2993/0278-0771-42.2.131.

[166]

N.A.K. Douglass and C. S. Fish. That's a relief: assessing beauty, realism, and landform clarity in multilayer terrain maps. Cartographic Perspectives, 2022(100):45–66, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146219407&doi=10.14714%2fCP100.1727&partnerID=40&md5=9146501aa984aa9a9879368c1bdf3201, doi:10.14714/CP100.1727.

[167]

C. Doyle, S. Luzzadder-Beach, and T. Beach. Advances in remote sensing of the early anthropocene in tropical wetlands: from biplanes to lidar and machine learning. Progress in Physical Geography, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140657894&doi=10.1177%2f03091333221134185&partnerID=40&md5=ece6b05c8c6866e015c756aa571e28ff, doi:10.1177/03091333221134185.

[168]

E. Draganits, M. Doneus, T. Gansum, L. Gustavsen, E. Nau, C. Tonning, I. Trinks, and W. Neubauer. The late nordic iron age and viking age royal burial site of borre in norway: als- and gpr-based landscape reconstruction and harbour location at an uplifting coastal area. Quaternary International, 367:96–110, 2015. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928780285&doi=10.1016%2fj.quaint.2014.04.045&partnerID=40&md5=618aa461ccd08c150ea4fbe845fbaa81, doi:10.1016/j.quaint.2014.04.045.

[169]

Lia Duarte, Ana Teodoro, Dalmiro Maia, and Domingos Barbosa. Radio astronomy demonstrator: assessment of the appropriate sites through a gis open source application. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 5(11):209, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032345197&doi=10.3390%2fijgi5110209&partnerID=40&md5=bc82a36c10aa324dc12d7dce8cb786e9, doi:10.3390/ijgi5110209.

[170]

Steve Dübel and Heidrun Schumann. Visualization of features in 3d terrain. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 6(11):357, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044603354&doi=10.3390%2fijgi6110357&partnerID=40&md5=09703073e5c5051662a0e3bbb0f0a7c2, doi:10.3390/ijgi6110357.

[171]

Gary Duckers. Bridging the 'geospatial divide' in archaeology: community based interpretation of lidar data. Internet Archaeology, 2013. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088181177&doi=10.11141%2fia.35.2&partnerID=40&md5=7f991ecb0dcda722181d0dff6767f5e3, doi:10.11141/ia.35.2.

[172]

Hamid Ebrahimy and Mohsen Azadbakht. Downscaling modis land surface temperature over a heterogeneous area: an investigation of machine learning techniques, feature selection, and impacts of mixed pixels. Computers and Geosciences, 124:93–102, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059840570&doi=10.1016%2fj.cageo.2019.01.004&partnerID=40&md5=15bc0c7273205836c2f27c2c0932a606, doi:10.1016/j.cageo.2019.01.004.

[173]

Pastor Fábrega-Álvarez and César Parcero-Oubiña. Now you see me. an assessment of the visual recognition and control of individuals in archaeological landscapes. Journal of Archaeological Science, 104:56–74, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062017957&doi=10.1016%2fj.jas.2019.02.002&partnerID=40&md5=5fb0eadc78f04982dec2d0023070d950, doi:10.1016/j.jas.2019.02.002.

[174]

Xiao-Yi Fang, Chen Cheng, Yong-Hong Liu, Wu-Peng Du, Xiao-Jun Xiao, and Bing Dang. A climatic environmental performance assessment method for ecological city construction: application to beijing yanqi lake. ADVANCES IN CLIMATE CHANGE RESEARCH, 6(1):23–35, 2015. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84945284998&doi=10.1016%2fj.accre.2015.08.001&partnerID=40&md5=949c6179a82cd41ed8e03ce695be6d45, doi:10.1016/j.accre.2015.08.001.

[175]

Y. Fang and L. Zhao. Assessing the environmental benefits of urban ventilation corridors: a case study in hefei, china. BUILDING AND ENVIRONMENT, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123679247&doi=10.1016%2fj.buildenv.2022.108810&partnerID=40&md5=06cb327d9bd5c0a8933aab040a82c165, doi:10.1016/j.buildenv.2022.108810.

[176]

Marianna Farmakis-Serebryakova and Lorenz Hurni. Comparison of relief shading techniques applied to landforms. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 9(4):253, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083790955&doi=10.3390%2fijgi9040253&partnerID=40&md5=45b27f539c07d2ad19d8f44baaed4337, doi:10.3390/ijgi9040253.

[177]

Massimiliano Favalli and Alessandro Fornaciai. Visualization and comparison of dem-derived parameters. application to volcanic areas. Geomorphology, 290:69–84, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017618865&doi=10.1016%2fj.geomorph.2017.02.029&partnerID=40&md5=b2bcd7b5128765a45ded2aa6fa635b7c, doi:10.1016/j.geomorph.2017.02.029.

[178]

Massimiliano Favalli, Alessandro Fornaciai, Luca Nannipieri, Andrew Harris, Sonia Calvari, and Charline Lormand. Uav-based remote sensing surveys of lava flow fields: a case study from etna's 1974 channel-fed lava flows. BULLETIN OF VOLCANOLOGY, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042530326&doi=10.1007%2fs00445-018-1192-6&partnerID=40&md5=7a43bc72c7a44db3bf1afbb07d92f646, doi:10.1007/s00445-018-1192-6.

[179]

D. R. Feldman, M. Worden, N. Falco, P. J. Dennedy-Frank, J. Chen, B. Dafflon, and H. Wainwright. Three-dimensional surface downwelling longwave radiation clear-sky effects in the upper colorado river basin. Geophysical Research Letters, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125954892&doi=10.1029%2f2021GL094605&partnerID=40&md5=740c2705c1c87dfff95849bbbb6192ab, doi:10.1029/2021GL094605.

[180]

Juan Fernandez-Diaz, William Carter, Ramesh Shrestha, and Craig Glennie. Now you see it$…$ now you don't: understanding airborne mapping lidar collection and data product generation for archaeological research in mesoamerica. Remote Sensing, 6(10):9951–10001, 2014. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84912141883&doi=10.3390%2frs6109951&partnerID=40&md5=b2a3c57fd4570acc0108e88a5d9c786f, doi:10.3390/rs6109951.

[181]

Javier Fernández-Lozano and Gabriel Gutiérrez-Alonso. Improving archaeological prospection using localized uavs assisted photogrammetry: an example from the roman gold district of the eria river valley (nw spain). Journal of Archaeological Science: Reports, 5:509–520, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84954115074&doi=10.1016%2fj.jasrep.2016.01.007&partnerID=40&md5=49cbc59f56492c249d46a67f710b9cfd, doi:10.1016/j.jasrep.2016.01.007.

[182]

J. Fernández-Lozano, J. J. Palao-Vicente, J. A. Blanco-Sánchez, G. Gutiérrez-Alonso, J. Remondo, J. Bonachea, M. Morellón, and A. González-Díez. Gold-bearing plio-quaternary deposits: insights from airborne lidar technology into the landscape evolution during the early roman mining works in north-west spain. Journal of Archaeological Science: Reports, 24:843–855, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063012446&doi=10.1016%2fj.jasrep.2019.03.001&partnerID=40&md5=4612132346d35d18c9692b57be3ee24c, doi:10.1016/j.jasrep.2019.03.001.

[183]

Javier Fernández-Lozano, Rosa M. Carrasco, Javier Pedraza, and Antonio Bernardo-Sánchez. The anthropic landscape imprint around one of the largest roman hydraulic gold mines in europe: sierra del teleno (nw spain). Geomorphology, 357:107094, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081023239&doi=10.1016%2fj.geomorph.2020.107094&partnerID=40&md5=7835f795e25c8786a95dad852c261508, doi:10.1016/j.geomorph.2020.107094.

[184]

J. Fernández-Lozano, G. Gutiérrez-Alonso, R. M. Carrasco, and J. Pedraza. Lidar datasets applied to roman gold mining studies in nw iberia. response to paper: roman gold mining at “las miédolas” (nw spain): lidar and photo interpretation in the analysis of “peines”. Geoheritage, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126132440&doi=10.1007%2fs12371-022-00674-z&partnerID=40&md5=074f9f69da5b084a489d2f948ba9398f, doi:10.1007/s12371-022-00674-z.

[185]

R. Filzwieser and S. Eichert. Towards an online database for archaeological landscapes. using the web based, open source software openatlas for the acquisition, analysis and dissemination of archaeological and historical data on a landscape basis. Heritage, 3(4):1385–1401, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85118808571&doi=10.3390%2fheritage3040077&partnerID=40&md5=1916c13470d4c5f8652f73afdd2d3b13, doi:10.3390/heritage3040077.

[186]

Roland Filzwieser, Vujadin Ivanišević, Geert J. Verhoeven, Christian Gugl, Klaus Löcker, Ivan Bugarski, Hannes Schiel, Mario Wallner, Immo Trinks, Tanja Trausmuth, Alois Hinterleitner, Nemanja Marković, Roald Docter, Falko Daim, and Wolfgang Neubauer. Integrating geophysical and photographic data to visualize the quarried structures of the roman town of bassianae. Remote Sensing, 13(12):2384, 2021. doi:10.3390/rs13122384.

[187]

R. Filzwieser, D. Ruß, M. Kucera, M. Doneus, G. Hasenhündl, G. J. Verhoeven, G. Zotti, A. Lenzhofer, G. Stüttler, M. Pisz, and W. Neubauer. History and archaeology in discourse on the dernberg–reconstructing the historical landscape of a medieval motte-and-bailey castle and deserted village. Heritage, 5(3):2123–2141, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138596281&doi=10.3390%2fheritage5030111&partnerID=40&md5=176af675f5350c20b9ef4086ad5c64cb, doi:10.3390/heritage5030111.

[188]

J. Flyckt, F. Andersson, N. Lavesson, L. Nilsson, and A. M. Å gren. Detecting ditches using supervised learning on high-resolution digital elevation models. Expert Systems with Applications, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128240716&doi=10.1016%2fj.eswa.2022.116961&partnerID=40&md5=39b8ad28d9d19952c67346644ee5088b, doi:10.1016/j.eswa.2022.116961.

[189]

G. Fontana. Italy's hidden hillforts: a large-scale lidar-based mapping of samnium. Journal of Field Archaeology, 47(4):245–261, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127648048&doi=10.1080%2f00934690.2022.2031465&partnerID=40&md5=8a82c9ec3647b6ddefb6a308e86c59dc, doi:10.1080/00934690.2022.2031465.

[190]

João Fonte, João Pimenta, Carlos Pereira, and Ana Margarida Arruda. Revisitando os chões de alpompé com técnicas de deteção remota: novas evidências sobre os sistemas defensivos romano-republicanos. Cuadernos de Prehistoria y Arqueologia de la Universidad Autonoma de Madrid, 2020(46):215–238, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099099769&doi=10.15366%2fCUPAUAM2020.46.008&partnerID=40&md5=521f7ab253f4bdb7d7d9c0907ed2fc1e, doi:10.15366/CUPAUAM2020.46.008.

[191]

J. Fonte, J. M. Costa-García, and M. Gago. O penedo dos lobos: roman military activity in the uplands of the galician massif (northwest iberia). Journal of Conflict Archaeology, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115232812&doi=10.1080%2f15740773.2021.1980757&partnerID=40&md5=523bc821ee5d83460a7458185204748a, doi:10.1080/15740773.2021.1980757.

[192]

J. Fonte, E. Meunier, J. A. Gonçalves, F. Dias, A. Lima, L. Gonçalves-Seco, and E. Figueiredo. An integrated remote-sensing and gis approach for mapping past tin mining landscapes in northwest iberia. Remote Sensing, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114101887&doi=10.3390%2frs13173434&partnerID=40&md5=78824f1c002c4d7061705989cc55b986, doi:10.3390/rs13173434.

[193]

Giuseppe Formetta, Giovanna Capparelli, Olaf David, Timothy Green, and Riccardo Rigon. Integration of a three-dimensional process-based hydrological model into the object modeling system. Water (Switzerland), 8(1):12, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958778331&doi=10.3390%2fw8010012&partnerID=40&md5=262593246e6e1793a2cd060cfb94eff7, doi:10.3390/w8010012.

[194]

M.F.L. Gacha and M. Koch. Distributed energy balance flux modelling of mass balances in the artesonraju glacier and discharge in the basin of artesoncocha, cordillera blanca, peru. Climate, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115782671&doi=10.3390%2fcli9090143&partnerID=40&md5=9d9b59d1adf116786e8e4ef14d672cbb, doi:10.3390/cli9090143.

[195]

Gallwey, Eyre, Tonkins, and Coggan. Bringing lunar lidar back down to earth: mapping our industrial heritage through deep transfer learning. Remote Sensing, 11(17):1994, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071983589&doi=10.3390%2frs11171994&partnerID=40&md5=9b0df73be60e89bab802eedc17bb4771, doi:10.3390/rs11171994.

[196]

T. G. Garrison, A. E. Thompson, S. Krause, S. Eshleman, J. C. Fernandez-Diaz, J. D. Baldwin, and R. Cambranes. Assessing the lidar revolution in the maya lowlands: a geographic approach to understanding feature classification accuracy. Progress in Physical Geography, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142027448&doi=10.1177%2f03091333221138050&partnerID=40&md5=dff68af9cb092fa1a6d9aa1314b5b9a3, doi:10.1177/03091333221138050.

[197]

N. Gazzán, C. Cancela-Cereijo, C. Gianotti, P. Fábrega-álvarez, L. Del Puerto, and F. Criado-Boado. From mounds to villages: the social construction of the landscape during the middle and late holocene in the india muerta lowlands, uruguay. Land, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127558753&doi=10.3390%2fland11030441&partnerID=40&md5=db3941c7db6fb3a2ed4077b25542825e, doi:10.3390/land11030441.

[198]

Wouter Gheyle, Birger Stichelbaut, Timothy Saey, Nicolas Note, Hanne van den Berghe, Veerle van Eetvelde, Marc van Meirvenne, and Jean Bourgeois. Scratching the surface of war. airborne laser scans of the great war conflict landscape in flanders (belgium). APPLIED GEOGRAPHY, 90:55–68, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85037356797&doi=10.1016%2fj.apgeog.2017.11.011&partnerID=40&md5=bdb92ec5ea62f94b6c6bc84ce63600d0, doi:10.1016/j.apgeog.2017.11.011.

[199]

A. González-Díez, J. A. Barreda-Argüeso, L. Rodríguez-Rodríguez, and J. Fernández-Lozano. The use of filters based on the fast fourier transform applied to dems for the objective mapping of karstic features. Geomorphology, 385:107724, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104388090&doi=10.1016%2fj.geomorph.2021.107724&partnerID=40&md5=3b3aa2fcff626cde7d3a775fc3d9a822, doi:10.1016/j.geomorph.2021.107724.

[200]

Benedikt Grammer, Erich Draganits, Martin Gretscher, and Ulrike Muss. Lidar-guided archaeological survey of a mediterranean landscape: lessons from the ancient greek polis of kolophon (ionia, western anatolia). Archaeological Prospection, 24(4):311–333, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018713268&doi=10.1002%2farp.1572&partnerID=40&md5=7992f22f19572919df52301244cc2525, doi:10.1002/arp.1572.

[201]

G. Grau, J. Vicent, and J. Moreno. Análisis del efecto topográfico en la corrección radiométrica de imágenes meris. Revista de Teledeteccion, pages 99, 2014. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84918784195&doi=10.4995%2fraet.2014.2299&partnerID=40&md5=773417d684690a672751734b67ce69df, doi:10.4995/raet.2014.2299.

[202]

Y. Gu and X.-Y. You. A spatial quantile regression model for driving mechanism of urban heat island by considering the spatial dependence and heterogeneity: an example of beijing, china. SUSTAINABLE CITIES AND SOCIETY, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123029131&doi=10.1016%2fj.scs.2022.103692&partnerID=40&md5=754969c4b3674b02da5b33bda9474770, doi:10.1016/j.scs.2022.103692.

[203]

N. Gumede, O. Mutanga, and M. Sibanda. Mapping leaf area index of the yellowwood tree species in an afromontane mistbelt forest of southern africa using topographic variables. Remote Sensing Applications: Society and Environment, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131145146&doi=10.1016%2fj.rsase.2022.100778&partnerID=40&md5=aec1477bd6af146d52a134e39fdd18e6, doi:10.1016/j.rsase.2022.100778.

[204]

Andong Guo, Jun Yang, Xiangming Xiao, Jianhong Xia, Cui Jin, and Xueming Li. Influences of urban spatial form on urban heat island effects at the community level in china. SUSTAINABLE CITIES AND SOCIETY, 53:101972, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075378667&doi=10.1016%2fj.scs.2019.101972&partnerID=40&md5=49d3c06109a4800fa03aaebf0c5ecfcb, doi:10.1016/j.scs.2019.101972.

[205]

C. Guo, Q. Xu, X. Dong, W. Li, K. Zhao, H. Lu, and Y. Ju. Geohazard recognition and inventory mapping using airborne lidar data in complex mountainous areas. Journal of Earth Science, 32(5):1079–1091, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85116257858&doi=10.1007%2fs12583-021-1467-2&partnerID=40&md5=e134486ac25e8ea46d1e3fe665c8a524, doi:10.1007/s12583-021-1467-2.

[206]

C. Guo, Q. Xu, X. Dong, X. Pan, X. Liu, and J. She. Landslide recognition based on svf terrain visualization method: a case study of a typical landslide in danba, sichuan, china. Journal of Chengdu University of Technology (Science and Technology Edition), 48(6):705–713, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131373560&doi=10.3969%2fj.issn.1671-9727.2021.06.07&partnerID=40&md5=baf6eee132df793986203889266513f6, doi:10.3969/j.issn.1671-9727.2021.06.07.

[207]

Alexandre Guyot, Laurence Hubert-Moy, and Thierry Lorho. Detecting neolithic burial mounds from lidar-derived elevation data using a multi-scale approach and machine learning techniques. Remote Sensing, 10(2):225, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042553801&doi=10.3390%2frs10020225&partnerID=40&md5=96e2ada7be607bfac11b221ff01e79ef, doi:10.3390/rs10020225.

[208]

Alexandre Guyot, Marc Lennon, and Laurence Hubert-Moy. Objective comparison of relief visualization techniques with deep cnn for archaeology. Journal of Archaeological Science: Reports, 38:103027, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106463536&doi=10.1016%2fj.jasrep.2021.103027&partnerID=40&md5=edd8737fe9f8aebc4660be18e01438ef, doi:10.1016/j.jasrep.2021.103027.

[209]

D. Han, H. An, F. Wang, X. Xu, Z. Qiao, M. Wang, X. Sui, S. Liang, X. Hou, H. Cai, and Y. Liu. Understanding seasonal contributions of urban morphology to thermal environment based on boosted regression tree approach. BUILDING AND ENVIRONMENT, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141539025&doi=10.1016%2fj.buildenv.2022.109770&partnerID=40&md5=8e5fe17f2124971151d816354a8193cf, doi:10.1016/j.buildenv.2022.109770.

[210]

Dalei Hao, Jianguang Wen, Qing Xiao, Shengbiao Wu, Xingwen Lin, Dongqin You, and Yong Tang. Modeling anisotropic reflectance over composite sloping terrain. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 56(7):3903–3923, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045219411&doi=10.1109%2fTGRS.2018.2816015&partnerID=40&md5=6f996f40fba94f93814ad2392c92dc45, doi:10.1109/TGRS.2018.2816015.

[211]

Dalei Hao, Jianguang Wen, Qing Xiao, Shengbiao Wu, Xingwen Lin, Baocheng Dou, Dongqin You, and Yong Tang. Simulation and analysis of the topographic effects on snow-free albedo over rugged terrain. Remote Sensing, 10(2):278, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042541287&doi=10.3390%2frs10020278&partnerID=40&md5=b36740ab1a8111c20321d35f5bd4251d, doi:10.3390/rs10020278.

[212]

D. Hao, J. Wen, Q. Xiao, D. You, X. Wu, X. Lin, and S. Wu. An accuracy assessment method for dem upscaling based on energy factor. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 44(4):570–577, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068071663&doi=10.13203%2fj.whugis20170126&partnerID=40&md5=694bc79c694e03cb40a44cb174f73b7b, doi:10.13203/j.whugis20170126.

[213]

Dalei Hao, Jianguang Wen, Qing Xiao, Dongqin You, and Yong Tang. An improved topography-coupled kernel-driven model for land surface anisotropic reflectance. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 58(4):2833–2847, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082884008&doi=10.1109%2fTGRS.2019.2956705&partnerID=40&md5=f796c157c264285137f6714fe5f1c608, doi:10.1109/TGRS.2019.2956705.

[214]

D. Hao, G. Bisht, Y. Gu, W.-L. Lee, K.-N. Liou, and L. R. Leung. A parameterization of sub-grid topographical effects on solar radiation in the e3sm land model (version 1.0): implementation and evaluation over the tibetan plateau. Geoscientific Model Development, 14(10):6273–6289, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117955625&doi=10.5194%2fgmd-14-6273-2021&partnerID=40&md5=22527feb9c011fff77bccc5d2af38c05, doi:10.5194/gmd-14-6273-2021.

[215]

Umesh Haritashya, Jeffrey Kargel, Dan Shugar, Gregory Leonard, Katherine Strattman, C. Watson, David Shean, Stephan Harrison, Kyle Mandli, and Dhananjay Regmi. Evolution and controls of large glacial lakes in the nepal himalaya. Remote Sensing, 10(5):798, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047532687&doi=10.3390%2frs10050798&partnerID=40&md5=13c7077325757b5ab9adc1da1b82c3ab, doi:10.3390/rs10050798.

[216]

W. He, S. Cao, M. Du, D. Hu, Y. Mo, M. Liu, J. Zhao, and Y. Cao. How do two-and three-dimensional urban structures impact seasonal land surface temperatures at various spatial scales? a case study for the northern part of brooklyn, new york, usa. Remote Sensing, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113398171&doi=10.3390%2frs13163283&partnerID=40&md5=f8ebc81602c0c0c82d33d9a6c52c9fb2, doi:10.3390/rs13163283.

[217]

Edward R. Henry, Carl R. Shields, and Tristram R. Kidder. Mapping the adena-hopewell landscape in the middle ohio valley, usa: multi-scalar approaches to lidar-derived imagery from central kentucky. Journal of Archaeological Method and Theory, 26(4):1513–1555, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075556738&doi=10.1007%2fs10816-019-09420-2&partnerID=40&md5=2caa9fada64148257b76cfcc823e2683, doi:10.1007/s10816-019-09420-2.

[218]

Edward R. Henry, Alice P. Wright, Sarah C. Sherwood, Stephen B. Carmody, Casey R. Barrier, and Christopher van de Ven. Beyond never-never land: integrating lidar and geophysical surveys at the johnston site, pinson mounds state archaeological park, tennessee, usa. Remote Sensing, 12(15):2364, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089693570&doi=10.3390%2fRS12152364&partnerID=40&md5=4baf750d77410461d626540ae9b96580, doi:10.3390/RS12152364.

[219]

Edward R. Henry, Natalie G. Mueller, and Mica B. Jones. Ritual dispositions, enclosures, and the passing of time: a biographical perspective on the winchester farm earthwork in central kentucky, usa. JOURNAL OF ANTHROPOLOGICAL ARCHAEOLOGY, 62:101294, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103970195&doi=10.1016%2fj.jaa.2021.101294&partnerID=40&md5=224888b1769e319db7501740d619314d, doi:10.1016/j.jaa.2021.101294.

[220]

Jae Heo, Jaehoon Jung, Byungil Kim, and SangUk Han. Digital elevation model-based convolutional neural network modeling for searching of high solar energy regions. APPLIED ENERGY, 262:114588, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078985189&doi=10.1016%2fj.apenergy.2020.114588&partnerID=40&md5=a01561b69fd26daa81714ecec5276871, doi:10.1016/j.apenergy.2020.114588.

[221]

I. Herzog. Computational approaches towards the understanding of past boundaries: a case study based on archaeological and historical data in a hilly region in germany. IT - Information Technology, 64(6):261–283, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143282936&doi=10.1515%2fitit-2022-0010&partnerID=40&md5=a1ecb7165a8588c3a51db8f700acb772, doi:10.1515/itit-2022-0010.

[222]

Ralf Hesse. Geomorphological traces of conflict in high-resolution elevation models. APPLIED GEOGRAPHY, 46:11–20, 2014. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887522080&doi=10.1016%2fj.apgeog.2013.10.004&partnerID=40&md5=9f35510bcde41f4ac31605ac83b75a0f, doi:10.1016/j.apgeog.2013.10.004.

[223]

Hung Chak Ho, Man Sing Wong, Lin Yang, Wenzhong Shi, Jinxin Yang, Muhammad Bilal, and Ta-Chien Chan. Spatiotemporal influence of temperature, air quality, and urban environment on cause-specific mortality during hazy days. ENVIRONMENT INTERNATIONAL, 112:10–22, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85037857158&doi=10.1016%2fj.envint.2017.12.001&partnerID=40&md5=e97770ca8996300e93156b98cf0d9d10, doi:10.1016/j.envint.2017.12.001.

[224]

Hung Chak Ho and Man Sing Wong. Urban environmental influences on the temperature-mortality relationship associated mental disorders and cardiorespiratory diseases during normal summer days in a subtropical city. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 26(23):24272–24285, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067847334&doi=10.1007%2fs11356-019-05594-0&partnerID=40&md5=e909fbb8a2ae8c7980a78e2df8400102, doi:10.1007/s11356-019-05594-0.

[225]

Hung Chak Ho, Man Sing Wong, Ho Yin Man, Yuan Shi, and Sawaid Abbas. Neighborhood-based subjective environmental vulnerability index for community health assessment: development, validation and evaluation. SCIENCE OF THE TOTAL ENVIRONMENT, 654:1082–1090, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056631254&doi=10.1016%2fj.scitotenv.2018.11.136&partnerID=40&md5=e2c57da8ceb3f84fc7769dcaf878b65d, doi:10.1016/j.scitotenv.2018.11.136.

[226]

Hung Chak Ho, Ho Yin Man, Man Sing Wong, Yuan Shi, and Blake Byron Walker. Perceived differences in the (re)production of environmental deprivation between sub-populations: a study combining citizens' perceptions with remote-sensed and administrative data. BUILDING AND ENVIRONMENT, 174:106769, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081133587&doi=10.1016%2fj.buildenv.2020.106769&partnerID=40&md5=a2fe003eab619a73af072e9e82b5d8e2, doi:10.1016/j.buildenv.2020.106769.

[227]

Matus Hodul, Anders Knudby, and Hung Ho. Estimation of continuous urban sky view factor from landsat data using shadow detection. Remote Sensing, 8(7):568, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019847861&doi=10.3390%2frs8070568&partnerID=40&md5=3057fd86265e8821724dc700f556d95f, doi:10.3390/rs8070568.

[228]

Lukáš Holata, Jindřich Plzák, Radek Světlík, and João Fonte. Integration of low-resolution als and ground-based sfm photogrammetry data. a cost-effective approach providing an `enhanced 3d model' of the hound tor archaeological landscapes (dartmoor, south-west england). Remote Sensing, 10(9):1357, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053604506&doi=10.3390%2frs10091357&partnerID=40&md5=619bb1d18c536dae58b6e6532e32ad4a, doi:10.3390/rs10091357.

[229]

Jan Horák, Martin Janovský, Michal Hejcman, Ladislav Šmejda, and Tomáš Klír. Soil geochemistry of medieval arable fields in lovětín near třešť, czech republic. CATENA, 162:14–22, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034731982&doi=10.1016%2fj.catena.2017.11.014&partnerID=40&md5=3da163c1e60f5ef5ab790f8a6c0dd66b, doi:10.1016/j.catena.2017.11.014.

[230]

Milan Horňák and Ján Zachar. Some examples of good practice in lidar prospection in preventive archaeology. Interdisciplinaria Archaeologica, VIII(2/2017):113–124, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042793400&doi=10.24916%2fiansa.2017.2.1&partnerID=40&md5=d73ad2df7fb3615d158da7e99a300a5a, doi:10.24916/iansa.2017.2.1.

[231]

Petr Hrubý, Martin Košťál, Karel Malý, and Jakub Těsnohlídek. Středověká úpravna rud u koječína na Českomoravské vrchovině : k poznání technologií produkce stříbra ve státě posledních přemyslovců. Archaeologia Historica, 44(2):949–981, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072878562&doi=10.5817%2fAH2019-2-19&partnerID=40&md5=4b123941f7d28532e1e34910a9c01efe, doi:10.5817/AH2019-2-19.

[232]

Pan Huang, Wei Zhao, and Ainong Li. The preliminary investigation on the uncertainties associated with surface solar radiation estimation in mountainous areas. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 14(7):1071–1075, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018899936&doi=10.1109%2fLGRS.2017.2696973&partnerID=40&md5=e6911fb2b130723edf426d6d9a31614c, doi:10.1109/LGRS.2017.2696973.

[233]

Xin Huang and Ying Wang. Investigating the effects of 3d urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: a case study of wuhan, central china. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 152:119–131, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064550621&doi=10.1016%2fj.isprsjprs.2019.04.010&partnerID=40&md5=613b04ffdea0d162d737bd105181e7eb, doi:10.1016/j.isprsjprs.2019.04.010.

[234]

Christopher Hutengs and Michael Vohland. Downscaling land surface temperatures at regional scales with random forest regression. REMOTE SENSING OF ENVIRONMENT, 178:127–141, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84961115074&doi=10.1016%2fj.rse.2016.03.006&partnerID=40&md5=0663696601bbdfebf44f666f9564bbff, doi:10.1016/j.rse.2016.03.006.

[235]

Scott R. Hutson. Adapting lidar data for regional variation in the tropics: a case study from the northern maya lowlands. Journal of Archaeological Science: Reports, 4:252–263, 2015. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84942577018&doi=10.1016%2fj.jasrep.2015.09.012&partnerID=40&md5=da7e47e912c2168abc6faadce73de30a, doi:10.1016/j.jasrep.2015.09.012.

[236]

S. R. Hutson, N. P. Dunning, B. Cook, T. Ruhl, N. C. Barth, and D. Conley. Ancient maya rural settlement patterns, household cooperation, and regional subsistence interdependency in the río bec area: contributions from g-liht. Journal of Anthropological Research, 77(4):550–579, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85118382089&doi=10.1086%2f716750&partnerID=40&md5=9c45dc7a4ccc88fbc01b3bb85e159e29, doi:10.1086/716750.

[237]

S. R. Hutson, T. S. Hare, T. W. Stanton, M. A. Masson, N. C. Barth, T. Ardren, and A. Magnoni. A space of one's own: houselot size among the ancient maya. JOURNAL OF ANTHROPOLOGICAL ARCHAEOLOGY, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117604470&doi=10.1016%2fj.jaa.2021.101362&partnerID=40&md5=4c085139e0977fbac13af3efd3cec32f, doi:10.1016/j.jaa.2021.101362.

[238]

Takeshi Inomata, Flory Pinzón, José Luis Ranchos, Tsuyoshi Haraguchi, Hiroo Nasu, Juan Carlos Fernandez-Diaz, Kazuo Aoyama, and Hitoshi Yonenobu. Archaeological application of airborne lidar with object-based vegetation classification and visualization techniques at the lowland maya site of ceibal, guatemala. Remote Sensing, 9(6):563, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021066279&doi=10.3390%2frs9060563&partnerID=40&md5=7a2e582100b22d3a303d6b8720a6be34, doi:10.3390/rs9060563.

[239]

Takeshi Inomata, Daniela Triadan, Verónica A. Vázquez López, Juan Carlos Fernandez-Diaz, Takayuki Omori, María Belén Méndez Bauer, Melina García Hernández, Timothy Beach, Clarissa Cagnato, Kazuo Aoyama, and Hiroo Nasu. Monumental architecture at aguada fénix and the rise of maya civilization. Nature, 582(7813):530–533, 2020. doi:10.1038/s41586-020-2343-4.

[240]

A. Jalandoni, M. Kottermair, B. Dixon, and V. H. Torres. Effectiveness of 2020 airborne lidar for identifying archaeological sites and features on guåhan (guam). Journal of Computer Applications in Archaeology, 5(1):255–270, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143132887&doi=10.5334%2fjcaa.101&partnerID=40&md5=173b98faac91b832a5e0ff9c550d0533, doi:10.5334/jcaa.101.

[241]

P. Jamšek Rupnik, M. Žebre, J. Jež, M. Zajc, F. Preusser, and G. Monegato. Deciphering the deformation mechanism in quaternary deposits along the idrija fault in the formerly glaciated soča valley, southeast european alps. Engineering Geology, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122645440&doi=10.1016%2fj.enggeo.2021.106515&partnerID=40&md5=0b356a3731eae931bbd8ac3a2d1f6f0a, doi:10.1016/j.enggeo.2021.106515.

[242]

Lukasz Janowski, Maria Kubacka, Andrzej Pydyn, Mateusz Popek, and Lukasz Gajewski. From acoustics to underwater archaeology: deep investigation of a shallow lake using high–resolution hydroacoustics—the case of lake lednica, poland. Archaeometry, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101509547&doi=10.1111%2farcm.12663&partnerID=40&md5=b255d2bbb7a378be220d1ce94393b14b, doi:10.1111/arcm.12663.

[243]

Zhong-Hu Jiao, Huazhong Ren, Xihan Mu, Jing Zhao, Tianxing Wang, and Jiaji Dong. Evaluation of four sky view factor algorithms using digital surface and elevation model data. EARTH AND SPACE SCIENCE, 6(2):222–237, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061937049&doi=10.1029%2f2018EA000475&partnerID=40&md5=2dfa0054d97b0ceadd3851962795f4da, doi:10.1029/2018EA000475.

[244]

Hester Jiskoot and Mark S. Mueller. Glacier fragmentation effects on surface energy balance and runoff: field measurements and distributed modelling. HYDROLOGICAL PROCESSES, 26(12):1861–1875, 2012. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84862021470&doi=10.1002%2fhyp.9288&partnerID=40&md5=af0422a6215f14e297e0c091e2e62a21, doi:10.1002/hyp.9288.

[245]

Katharine M. Johnson and William B. Ouimet. Rediscovering the lost archaeological landscape of southern new england using airborne light detection and ranging (lidar). Journal of Archaeological Science, 43(1):9–20, 2014. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84891723190&doi=10.1016%2fj.jas.2013.12.004&partnerID=40&md5=2e71f021ec6aaf1de260676f19b3a4cf, doi:10.1016/j.jas.2013.12.004.

[246]

Katharine M. Johnson and William B. Ouimet. Physical properties and spatial controls of stone walls in the northeastern usa: implications for anthropocene studies of 17th to early 20th century agriculture. ANTHROPOCENE, 15:22–36, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994713290&doi=10.1016%2fj.ancene.2016.07.001&partnerID=40&md5=692dd03f75885096492eed5d25e5f0c7, doi:10.1016/j.ancene.2016.07.001.

[247]

Katharine M. Johnson and William B. Ouimet. An observational and theoretical framework for interpreting the landscape palimpsest through airborne lidar. APPLIED GEOGRAPHY, 91:32–44, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039979208&doi=10.1016%2fj.apgeog.2017.12.018&partnerID=40&md5=7dfba63707a5c1e95440197a7adcf3ab, doi:10.1016/j.apgeog.2017.12.018.

[248]

Katharine M. Johnson and William B. Ouimet. Reconstructing historical forest cover and land use dynamics in the northeastern united states using geospatial analysis and airborne lidar. Annals of the American Association of Geographers, pages 1–23, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102359764&doi=10.1080%2f24694452.2020.1856640&partnerID=40&md5=7fdce09a39016d67b166b42fbfa68ef9, doi:10.1080/24694452.2020.1856640.

[249]

G. Jordanova and T. Verbovšek. Improved automatic classification of litho-geomorphological units by using raster image blending, vipava valley (sw slovenia). Remote Sensing, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146427970&doi=10.3390%2frs15020531&partnerID=40&md5=1dd33000ef48e3d5d38f0eabf2d0a041, doi:10.3390/rs15020531.

[250]

M. Y. Joshi, A. Rodler, M. Musy, S. Guernouti, M. Cools, and J. Teller. Identifying urban morphological archetypes for microclimate studies using a clustering approach. BUILDING AND ENVIRONMENT, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137662382&doi=10.1016%2fj.buildenv.2022.109574&partnerID=40&md5=a7f6a0680996f68253c5924d0f7ae1e4, doi:10.1016/j.buildenv.2022.109574.

[251]

M. Kałaska, R. Siuda, P. Sierpień, and D. H. Werra. Application of arsenic surveying for determining the position of former mining and metallurgical constructions: an example from the radzimowice area (lower silesia, sw poland). ARCHAEOLOGICAL AND ANTHROPOLOGICAL SCIENCES, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137591457&doi=10.1007%2fs12520-022-01654-8&partnerID=40&md5=c0770031425036bf9eec8c34e208884d, doi:10.1007/s12520-022-01654-8.

[252]

Israa Kadhim and Fanar M. Abed. The potential of lidar and uav-photogrammetric data analysis to interpret archaeological sites: a case study of chun castle in south-west england. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 10(1):41, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105155726&doi=10.3390%2fijgi10010041&partnerID=40&md5=15c75a77f538877a14bf1cc9be936fb5, doi:10.3390/ijgi10010041.

[253]

Maciej Kania and Mateusz Szczęch. Geometry and topology of tectonolineaments in the gorce mts. (outer carpathians) in poland. JOURNAL OF STRUCTURAL GEOLOGY, 141:104186, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091675311&doi=10.1016%2fj.jsg.2020.104186&partnerID=40&md5=5cc220e90a62a994be4db1934313cd56, doi:10.1016/j.jsg.2020.104186.

[254]

Zahra Karimidastenaei, Ali Torabi Haghighi, Omid Rahmati, Kabir Rasouli, Sajad Rozbeh, Abdollah Pirnia, Biswajeet Pradhan, and Bjørn Kløve. Fog-water harvesting capability index (fci) mapping for a semi-humid catchment based on socio-environmental variables and using artificial intelligence algorithms. SCIENCE OF THE TOTAL ENVIRONMENT, 708:135115, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075989839&doi=10.1016%2fj.scitotenv.2019.135115&partnerID=40&md5=9ec0369391b6966a7089698ca5f7c1b0, doi:10.1016/j.scitotenv.2019.135115.

[255]

Vladislav V. Kazakov, Aleksandr I. Simukhin, Vasiliy S. Kovalev, Pavel E. Marnuev, Dashinima V. Namsaraev, and Lyudmila V. Lbova. The tamchinskiy deer stone: documenting megalithic objects. Siberian Historical Research, 2019(3):141–167, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082115685&doi=10.17223%2f2312461X%2f25%2f8&partnerID=40&md5=6bb1bd2c177243b68172f931e753cd40, doi:10.17223/2312461X/25/8.

[256]

Grzegorz Kiarszys. The destroyer of worlds hidden in the forest: cold war nuclear warhead sites in poland. Antiquity, 93(367):236–255, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061647150&doi=10.15184%2faqy.2018.173&partnerID=40&md5=60f79814c6ceb427bd966c33aac299f9, doi:10.15184/aqy.2018.173.

[257]

Chris Kidd and Lee Chapman. Derivation of sky-view factors from lidar data. INTERNATIONAL JOURNAL OF REMOTE SENSING, 33(11):3640–3652, 2012. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857012365&doi=10.1080%2f01431161.2011.635163&partnerID=40&md5=7d6fe57e4bdf20d95fd26a9b8e05a5f3, doi:10.1080/01431161.2011.635163.

[258]

Drago Kladnik, Matjaž Geršič, Primož Pipan, and Manca Volk Bahun. Land-use changes in slovenian terraced landscapes. Acta Geographica Slovenica, 59(2):119–141, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069227756&doi=10.3986%2fAGS.6988&partnerID=40&md5=1032f5b02148b23b9077c08e87608b77, doi:10.3986/AGS.6988.

[259]

Raphael Knevels, Helene Petschko, Philip Leopold, and Alexander Brenning. Geographic object-based image analysis for automated landslide detection using open source gis software. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 8(12):551, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076676014&doi=10.3390%2fijgi8120551&partnerID=40&md5=5548697aae228e104117ab9176f50f26, doi:10.3390/ijgi8120551.

[260]

Žiga Kokalj, Klemen Zakšek, and Krištof Oštir. Application of sky-view factor for the visualisation of historic landscape features in lidar-derived relief models. Antiquity, 85(327):263–273, 2011. doi:10.1017/S0003598X00067594.

[261]

Žiga Kokalj and Maja Somrak. Why not a single image? combining visualizations to facilitate fieldwork and on-screen mapping. Remote Sensing, 11(7):747, 2019. doi:10.3390/rs11070747.

[262]

Žiga Kokalj and Johannes Mast. Space lidar for archaeology? reanalyzing gedi data for detection of ancient maya buildings. Journal of Archaeological Science: Reports, 36:102811, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100318003&doi=10.1016%2fj.jasrep.2021.102811&partnerID=40&md5=86f43ef3878d78501192726a94f565f6, doi:10.1016/j.jasrep.2021.102811.

[263]

F. Kong, J. Chen, A. Middel, H. Yin, M. Li, T. Sun, N. Zhang, J. Huang, H. Liu, K. Zhou, and J. Ma. Impact of 3-d urban landscape patterns on the outdoor thermal environment: a modelling study with solweig. Computers, Environment and Urban Systems, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126137383&doi=10.1016%2fj.compenvurbsys.2022.101773&partnerID=40&md5=3a780fccda2cb478b2e66cc8de4ea989, doi:10.1016/j.compenvurbsys.2022.101773.

[264]

Karin Kopetzky, Hermann Genz, Christoph Schwall, Jakob Rom, Florian Haas, Manuel Stark, Fabian Dremel, and Mario Börner. Between land and sea: tell mirhan and the chekka regional survey. Agypten und Levante, 29:105–124, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097592361&doi=10.1553%2fAEUNDL29S105&partnerID=40&md5=128dfbba14169e123cefc66e2e5b6a96, doi:10.1553/AEUNDL29S105.

[265]

Kathryn E. Krasinski, Brian T. Wygal, Joanna Wells, Richard L. Martin, and Fran Seager-Boss. Detecting late holocene cultural landscape modifications using lidar imagery in the boreal forest, susitna valley, southcentral alaska. Journal of Field Archaeology, 41(3):255–270, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84981240767&doi=10.1080%2f00934690.2016.1174764&partnerID=40&md5=f6cda62c5e23ca076b535138e1ad5943, doi:10.1080/00934690.2016.1174764.

[266]

Shashi Kumar, S. Kandasamy Vignesh, Arun Babu, Praveen K. Thakur, and Shefali Agrawal. Psinsar-based surface deformation mapping of angkor wat cultural heritage site. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 49(4):827–842, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096208103&doi=10.1007%2fs12524-020-01257-7&partnerID=40&md5=3353ea05a3f16d199a64aeeeb74e8586, doi:10.1007/s12524-020-01257-7.

[267]

K. L. Kvamme. A filter for characterizing the ridge-drainage continuum in digital elevation models. Journal of Archaeological Science, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85118492400&doi=10.1016%2fj.jas.2021.105510&partnerID=40&md5=399663539414c0ce08911915201d70ff, doi:10.1016/j.jas.2021.105510.

[268]

Joshua J. Kwoka, Thomas H. Guderjan, Sara Eshleman, Thomas Ruhl, Justin Telepak, Timothy Beach, Sheryl Luzzadder-Beach, Will McClatchey, and Grace Bascopé. A multimethod approach to the study of classic maya houselots and land tenure: preliminary results from the three rivers region, belize. Journal of Archaeological Science: Reports, 38:103049, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107689519&doi=10.1016%2fj.jasrep.2021.103049&partnerID=40&md5=50f62d59b5f24977fef023bdbcf46d3e, doi:10.1016/j.jasrep.2021.103049.

[269]

Thegn N. Ladefoged, Mark D. McCoy, Gregory P. Asner, Patrick V. Kirch, Cedric O. Puleston, Oliver A. Chadwick, and Peter M. Vitousek. Agricultural potential and actualized development in hawai'i: an airborne lidar survey of the leeward kohala field system (hawai'i island). Journal of Archaeological Science, 38(12):3605–3619, 2011. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80054097091&doi=10.1016%2fj.jas.2011.08.031&partnerID=40&md5=290b92c124a4f83f9b4a852411bb53c4, doi:10.1016/j.jas.2011.08.031.

[270]

S. Lai, Y. Zhao, Y. Fan, and J. Ge. Characteristics of daytime land surface temperature in wind corridor: a case study of a hot summer and warm winter city. Journal of Building Engineering, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122289042&doi=10.1016%2fj.jobe.2021.103370&partnerID=40&md5=f8c67266dca3f334ee29c1fc090c642c, doi:10.1016/j.jobe.2021.103370.

[271]

C.-F. Lee, H.-T. Chou, T.-C. Tsao, C.-H. Hsu, C.-H. Huang, and W.-S. Liao. Heliu debris flow induced by typhoon soudelor: failure mechanism and numerical simulation. Journal of Chinese Soil and Water Conservation, 47(4):171–184, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013911937&partnerID=40&md5=ae5e2adbf2c30dc1d1d729c299d2f608.

[272]

Ching-Fang Lee, Chia-Ming Lo, Hsien-Ter Chou, and Shu-Yeong Chi. Landscape evolution analysis of large scale landslides at don-ao peak, taiwan. ENVIRONMENTAL EARTH SCIENCES, 75(1):1–19, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84950325580&doi=10.1007%2fs12665-015-4817-5&partnerID=40&md5=99fbf890cb44ab696815dd5c8bcd1d30, doi:10.1007/s12665-015-4817-5.

[273]

C.-F. Lee, T.-C. Tsao, W.-K. Huang, S.-C. Lin, and H.-Y. Yin. Landslide mapping and geomorphologic change based on a sky-view factor and local relief model: a case study in hongye village, taitung. Journal of Chinese Soil and Water Conservation, 49(1):27–39, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049253222&doi=10.29417%2fJCSWC.201803_49%281%29.0003&partnerID=40&md5=407a804faef7c4b5a99ca65bec3f513d, doi:10.29417/JCSWC.201803{\textunderscore }49(1).0003.

[274]

Doo-Il Lee, Ju-Wan Woo, and Sang-Hyun Lee. An analytically based numerical method for computing view factors in real urban environments. THEORETICAL AND APPLIED CLIMATOLOGY, 131(1-2):445–453, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994246364&doi=10.1007%2fs00704-016-1966-8&partnerID=40&md5=1ba0e9b401275ece604f769d8e0f30d7, doi:10.1007/s00704-016-1966-8.

[275]

Kwanho Lee and Geoff J. Levermore. Sky view factor and sunshine factor of urban geometry for urban heat island and renewable energy. ARCHITECTURAL SCIENCE REVIEW, 62(1):26–34, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055440842&doi=10.1080%2f00038628.2018.1536601&partnerID=40&md5=a88080bb79484803917db488f02e647c, doi:10.1080/00038628.2018.1536601.

[276]

Doo-Il Lee and Sang-Hyun Lee. The microscale urban surface energy (muse) model for real urban application. ATMOSPHERE, 11(12):1347, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098091668&doi=10.3390%2fatmos11121347&partnerID=40&md5=586c9c080904c0d8f9d7fe89204754db, doi:10.3390/atmos11121347.

[277]

Kwanho Lee and Geoff J. Levermore. Estimation of surface solar irradiation using sky view factor, sunshine factor and solar irradiation models according to geometry and buildings. ADVANCES IN BUILDING ENERGY RESEARCH, 14(2):189–201, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062942817&doi=10.1080%2f17512549.2019.1591299&partnerID=40&md5=526a59590c073e135232d8043f700d14, doi:10.1080/17512549.2019.1591299.

[278]

Michał Leloch, Michał Jakubczak, Marcin Przybyła, Katarzyna Pyżewicz, Marcin Szeliga, Michał Wojenka, Grzegorz Czajka, and Małgorzata Kot. A multiproxy approach to studying a large prehistoric enclosure in ojców, kraków upland, poland. Archaeological Prospection, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105284664&doi=10.1002%2farp.1824&partnerID=40&md5=98704c586af96a6b040589d9101c69bd, doi:10.1002/arp.1824.

[279]

Jingxin Li, Hongqi Zhang, and Erqi Xu. A two-level nested model for extracting positive and negative terrains combining morphology and visualization indicators. ECOLOGICAL INDICATORS, 109:105842, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073717153&doi=10.1016%2fj.ecolind.2019.105842&partnerID=40&md5=09b82b5fbb99285ed44f0af5dcb4892b, doi:10.1016/j.ecolind.2019.105842.

[280]

T. Li, D. Hu, Y. Wang, Y. Di, and M. Liu. Correcting remote-sensed shaded image with urban surface radiative transfer model. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122535486&doi=10.1016%2fj.jag.2021.102654&partnerID=40&md5=f3b9b35979c77d72b73b88e9f62c27ee, doi:10.1016/j.jag.2021.102654.

[281]

Jianming Liang, Jianhua Gong, Jun Sun, Jieping Zhou, Wenhang Li, Yi Li, Jin Liu, and Shen Shen. Automatic sky view factor estimation from street view photographs—a big data approach. Remote Sensing, 9(5):411, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019964303&doi=10.3390%2frs9050411&partnerID=40&md5=86093d9456c93dd68a98563c538778e8, doi:10.3390/rs9050411.

[282]

Jonathan Lim, James Clark, and Gonzalo Linares-Matás. Subsurface delineation of doline features associated with pleistocene clay-with-flints deposits in the chilterns: implications for british palaeolithic archaeology. Journal of Archaeological Science: Reports, 34:102665, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096687648&doi=10.1016%2fj.jasrep.2020.102665&partnerID=40&md5=9dd72027aa01027491b56d2fbcd396a7, doi:10.1016/j.jasrep.2020.102665.

[283]

J. A. Linares-Catela, C. M. Molina, A. L. López, T. D. Romero, J. C. Vera-Rodríguez, and P. B. Ramírez. The megalithic site of la torre-la janera (huelva): prehistoric monumentalities in the lower guadiana. Trabajos de Prehistoria, 79(1):115–130, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85133435252&doi=10.3989%2ftp.2022.12290&partnerID=40&md5=a445bd5df6c203eccaa5254d54fabebf, doi:10.3989/tp.2022.12290.

[284]

Yonghong Liu, Xiaoyi Fang, Chen Cheng, Qingzu Luan, Wupeng Du, Xiaojun Xiao, and Huaisheng Wang. Research and application of city ventilation assessments based on satellite data and gis technology: a case study of the yanqi lake eco-city in huairou district, beijing. METEOROLOGICAL APPLICATIONS, 23(2):320–327, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84962861039&doi=10.1002%2fmet.1557&partnerID=40&md5=9bb675269f39a468a3284bcc8245665d, doi:10.1002/met.1557.

[285]

Yonghong Liu, Pengfei Cheng, Peng Chen, and Shuo Zhang. Detection of wind corridors based on “climatopes”: a study in central ji'nan. THEORETICAL AND APPLIED CLIMATOLOGY, 142(3-4):869–884, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089454522&doi=10.1007%2fs00704-020-03323-z&partnerID=40&md5=253381c481cc320b390624efebb6dd9f, doi:10.1007/s00704-020-03323-z.

[286]

Yonghong Liu, Yongming Xu, Fangmin Zhang, and Wenjun Shu. A preliminary study on the influence of beijing urban spatial morphology on near-surface wind speed. URBAN CLIMATE, 34:100703, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091596898&doi=10.1016%2fj.uclim.2020.100703&partnerID=40&md5=efe48be9701e4a63e63ee1437d14bd0d, doi:10.1016/j.uclim.2020.100703.

[287]

Yonghong Liu, Yongming Xu, Fuzhong Weng, Fangmin Zhang, and Wenjun Shu. Impacts of urban spatial layout and scale on local climate: a case study in beijing. SUSTAINABLE CITIES AND SOCIETY, 68:102767, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101370514&doi=10.1016%2fj.scs.2021.102767&partnerID=40&md5=25f3e04bbdd5e19f26abae80ea13d192, doi:10.1016/j.scs.2021.102767.

[288]

Y. Liu, Y. Xu, F. Zhang, and W. Shu. Influence of beijing spatial morphology on the distribution of urban heat island. Dili Xuebao/Acta Geographica Sinica, 76(7):1662–1679, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113808214&doi=10.11821%2fdlxb202107007&partnerID=40&md5=ee27142e14d5d829da001facebc00a4b, doi:10.11821/dlxb202107007.

[289]

Yonghong Liu, Yongming Xu, Xiuzhen Han, Wenjun Shu, and Fuzhong Weng. Influence of the urban spatial layout of central beijing on the atmospheric humidity field. THEORETICAL AND APPLIED CLIMATOLOGY, 145(1-2):455–471, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105525825&doi=10.1007%2fs00704-021-03621-0&partnerID=40&md5=5c9fa6eac38d875822cd9a4bde87f66d, doi:10.1007/s00704-021-03621-0.

[290]

Y. Liu, C. Xuan, Y. Xu, N. Fu, F. Xiong, and L. Gan. Local climate effects of urban wind corridors in beijing. URBAN CLIMATE, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129476496&doi=10.1016%2fj.uclim.2022.101181&partnerID=40&md5=4d92dd239e74ef8ecd0d9de7e0d00ff8, doi:10.1016/j.uclim.2022.101181.

[291]

Y. Liu, Y. Xu, Y. Zhang, X. Han, F. Weng, C. Xuan, and W. Shu. Impacts of the urban spatial landscape in beijing on surface and canopy urban heat islands. Journal of Meteorological Research, 36(6):882–899, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146128576&doi=10.1007%2fs13351-022-2045-y&partnerID=40&md5=b2675070e3a1e0c1ecfb29b36c304f0b, doi:10.1007/s13351-022-2045-y.

[292]

Noura Lkebir, Tanguy Rolland, Fabrice Monna, Moussa Masrour, Lhoussaine Bouchaou, Emmanuel Fara, Nicolas Navarro, Josef Wilczek, El Hassan Beraaouz, Carmela Chateau-Smith, and Félix Pérez-Lorente. Anza palaeoichnological site, late cretaceous, morocco. part iii: comparison between traditional and photogrammetric records. JOURNAL OF AFRICAN EARTH SCIENCES, 172:103985, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089798851&doi=10.1016%2fj.jafrearsci.2020.103985&partnerID=40&md5=d930b4842c4fd7ae84d51469c5d3b36e, doi:10.1016/j.jafrearsci.2020.103985.

[293]

Chia-Ming Lo, Ching-Fang Lee, and Jeff Keck. Application of sky view factor technique to the interpretation and reactivation assessment of landslide activity. ENVIRONMENTAL EARTH SCIENCES, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019711584&doi=10.1007%2fs12665-017-6705-7&partnerID=40&md5=0e77d62e2174cd5b97610a817c5668c8, doi:10.1007/s12665-017-6705-7.

[294]

Edisa Lozić and Benjamin Štular. Documentation of archaeology-specific workflow for airborne lidar data processing. Geosciences (Switzerland), 11(1):26, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099651658&doi=10.3390%2fgeosciences11010026&partnerID=40&md5=7efcbb9dc1116f7f0d0b3b62eee2404b, doi:10.3390/geosciences11010026.

[295]

Lei Luo, Xinyuan Wang, Huadong Guo, Rosa Lasaponara, Xin Zong, Nicola Masini, Guizhou Wang, Pilong Shi, Houcine Khatteli, Fulong Chen, Shahina Tariq, Jie Shao, Nabil Bachagha, Ruixia Yang, and Ya Yao. Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: a review of the century (1907–2017). REMOTE SENSING OF ENVIRONMENT, 232:111280, 2019. doi:10.1016/j.rse.2019.111280.

[296]

Florence Magnin, Alexander Brenning, Xavier Bodin, Philip Deline, and Ludovic Ravanel. Modélisation statistique de la distribution du permafrost de paroi : application au massif du mont blanc. Geomorphologie: Relief, Processus, Environnement, 21(2):145–162, 2015. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84939800928&doi=10.4000%2fgeomorphologie.10965&partnerID=40&md5=7bbde0a391191e2408dd89057aff05ca, doi:10.4000/geomorphologie.10965.

[297]

Luigi Magnini, Cinzia Bettineschi, and Armando de Guio. Object-based shell craters classification from lidar-derived sky-view factor. Archaeological Prospection, 24(3):211–223, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85007047555&doi=10.1002%2farp.1565&partnerID=40&md5=acb1de5478a03dca9016770059d8f7be, doi:10.1002/arp.1565.

[298]

L. Magnini, C. Bettineschi, A. de Guio, L. Burigana, G. Colombatti, C. Bettanini, and A. Aboudan. Multisensor-multiscale approach in studying the proto-historic settlement of bostel in northern italy. ARCHEOLOGIA E CALCOLATORI, 30:347–365, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85080084858&doi=10.19282%2fac.30.2019.20&partnerID=40&md5=7779ceb13d46f89cb4f1a1d3c46ea788, doi:10.19282/ac.30.2019.20.

[299]

Luigi Magnini and Cinzia Bettineschi. Object-based predictive modeling (obpm) for archaeology: finding control places in mountainous environments. Remote Sensing, 13(6):1197, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103520317&doi=10.3390%2frs13061197&partnerID=40&md5=98d8cc8c52b2963915d94533feadb813, doi:10.3390/rs13061197.

[300]

Emanuele Mandanici, Paolo Conte, and Valentina Girelli. Integration of aerial thermal imagery, lidar data and ground surveys for surface temperature mapping in urban environments. Remote Sensing, 8(10):880, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019059558&doi=10.3390%2frs8100880&partnerID=40&md5=a84655b54ac3b35e9dbe60106bafdf7c, doi:10.3390/rs8100880.

[301]

Nicola Masey, Scott Hamilton, and Iain J. Beverland. Development and evaluation of the rapidair\circledR dispersion model, including the use of geospatial surrogates to represent street canyon effects. Environmental Modelling and Software, 108:253–263, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053195806&doi=10.1016%2fj.envsoft.2018.05.014&partnerID=40&md5=73e4b263d9aa1bdae3b213a57ae51b3b, doi:10.1016/j.envsoft.2018.05.014.

[302]

Nicola Masini, Fabrizio Gizzi, Marilisa Biscione, Vincenzo Fundone, Michele Sedile, Maria Sileo, Antonio Pecci, Biagio Lacovara, and Rosa Lasaponara. Medieval archaeology under the canopy with lidar. the (re)discovery of a medieval fortified settlement in southern italy. Remote Sensing, 10(10):1598, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055437332&doi=10.3390%2frs10101598&partnerID=40&md5=e5d36488ad90f309d138054cf4ebe6b4, doi:10.3390/rs10101598.

[303]

Nicola Masini and Rosa Lasaponara. On the reuse of multiscale lidar data to investigate the resilience in the late medieval time: the case study of basilicata in south of italy. Journal of Archaeological Method and Theory, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096599327&doi=10.1007%2fs10816-020-09495-2&partnerID=40&md5=e9970c3751734fc7e87f419ab9f74c81, doi:10.1007/s10816-020-09495-2.

[304]

Nicola Masini and Rosa Lasaponara. Satellite and close range analysis for the surveillance and knowledge improvement of the nasca geoglyphs. REMOTE SENSING OF ENVIRONMENT, 236:111447, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074655608&doi=10.1016%2fj.rse.2019.111447&partnerID=40&md5=05426aae8f8e2ac8bed272df72f4351f, doi:10.1016/j.rse.2019.111447.

[305]

N. Masini and R. Lasaponara. Remote and close range sensing for the automatic identification and characterization of archaeological looting. the case of peru. Journal of Computer Applications in Archaeology, 4(1):126–144, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108843811&doi=10.5334%2fjcaa.73&partnerID=40&md5=5c2fa14be168d9b6e56a320e1e42bb3e, doi:10.5334/jcaa.73.

[306]

N. Masini, N. Abate, F. T. Gizzi, V. Vitale, A. Minervino Amodio, M. Sileo, M. Biscione, R. Lasaponara, M. Bentivenga, and F. Cavalcante. Uav lidar based approach for the detection and interpretation of archaeological micro topography under canopy—the rediscovery of perticara (basilicata, italy). Remote Sensing, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143801753&doi=10.3390%2frs14236074&partnerID=40&md5=82760ca04ceaecb1bbd4c28ceee731b6, doi:10.3390/rs14236074.

[307]

Jesús Mateo Lázaro, José Ángel Sánchez Navarro, Alejandro García Gil, and Vanesa Edo Romero. 3d-geological structures with digital elevation models using gpu programming. Computers and Geosciences, 70:138–146, 2014. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84903526373&doi=10.1016%2fj.cageo.2014.05.014&partnerID=40&md5=f1e4ba893533622a0ad97bbe521ec8ff, doi:10.1016/j.cageo.2014.05.014.

[308]

Jesús Mateo-Lázaro, Jorge Castillo-Mateo, Alejandro García-Gil, José Ángel Sánchez-Navarro, Víctor Fuertes-Rodríguez, and Vanesa Edo-Romero. Comparative hydrodynamic analysis by using two−dimensional models and application to a new bridge. Water (Switzerland), 12(4):997, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086769563&doi=10.3390%2fW12040997&partnerID=40&md5=de1902281bcdadae32b67b3e160a8f0e, doi:10.3390/W12040997.

[309]

Rémi Matos–Machado, Jean–Pierre Toumazet, Jean–Claude Bergès, Jean–Paul Amat, Gilles Arnaud–Fassetta, François Bétard, Clélia Bilodeau, Joseph P. Hupy, and Stéphanie Jacquemot. War landform mapping and classification on the verdun battlefield (france) using airborne lidar and multivariate analysis. Earth Surface Processes and Landforms, 44(7):1430–1448, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061842864&doi=10.1002%2fesp.4586&partnerID=40&md5=c8612d15d4e9f80dfa9a727456e6fb61, doi:10.1002/esp.4586.

[310]

A. Mayoral, J.-P. Toumazet, F.-X. Simon, Franck Vautier, and J.-L. Peiry. The highest gradient model: a new method for analytical assessment of the efficiency of lidar-derived visualization techniques for landform detection and mapping. Remote Sensing, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013684476&doi=10.3390%2frs90201020&partnerID=40&md5=c8ffc0dc5c41e3af6bca51981196ec9a, doi:10.3390/rs90201020.

[311]

Mark D. McCoy, Gregory P. Asner, and Michael W. Graves. Airborne lidar survey of irrigated agricultural landscapes: an application of the slope contrast method. Journal of Archaeological Science, 38(9):2141–2154, 2011. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79960087476&doi=10.1016%2fj.jas.2011.02.033&partnerID=40&md5=67fda84bc9d73af58bce4cbc4d53822c, doi:10.1016/j.jas.2011.02.033.

[312]

Mark D. McCoy, Jesse Casana, Austin Chad Hill, Elise Jakoby Laugier, Mara A. Mulrooney, and Thegn N. Ladefoged. Unpiloted aerial vehicle acquired lidar for mapping monumental architecture. Advances in Archaeological Practice, 9(2):160–174, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106729519&doi=10.1017%2faap.2021.5&partnerID=40&md5=6cf769b902a9050c9483232a5e18e51d, doi:10.1017/aap.2021.5.

[313]

William Megarry, Gabriel Cooney, Douglas Comer, and Carey Priebe. Posterior probability modeling and image classification for archaeological site prospection: building a survey efficacy model for identifying neolithic felsite workshops in the shetland islands. Remote Sensing, 8(6):529, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019927382&doi=10.3390%2frs8060529&partnerID=40&md5=ffb806f6fa180a8d613ee80a8124db5f, doi:10.3390/rs8060529.

[314]

William P. Megarry, Bryce A. Davenport, and Douglas C. Comer. Emerging applications of lidar / airborne laser scanning in the management of world heritage sites. CONSERVATION AND MANAGEMENT OF ARCHAEOLOGICAL SITES, 18(4):393–410, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018706918&doi=10.1080%2f13505033.2016.1290481&partnerID=40&md5=e56986b152b401665a9c2dd4340264b9, doi:10.1080/13505033.2016.1290481.

[315]

M. Meliho, A. Khattabi, D. Zejli, C. A. Orlando, and C. E. Dansou. Artificial intelligence and remote sensing for spatial prediction of daily air temperature: case study of souss watershed of morocco. Geo-Spatial Information Science, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122460017&doi=10.1080%2f10095020.2021.2014765&partnerID=40&md5=829e2d6a18d022ac9574f3ae626093c7, doi:10.1080/10095020.2021.2014765.

[316]

Andrés Menéndez Blanco, Jesús García Sánchez, José Manuel Costa-García, João Fonte, David González-Álvarez, and Víctor Vicente García. Following the roman army between the southern foothills of the cantabrian mountains and the northern plains of castile and león (north of spain): archaeological applications of remote sensing and geospatial tools. Geosciences (Switzerland), 10(12):485, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097317354&doi=10.3390%2fgeosciences10120485&partnerID=40&md5=9798bbfe840daf33a9de9a0c4968a10d, doi:10.3390/geosciences10120485.

[317]

Q. Meng, W. Liu, L. Zhang, M. Allam, Y. Bi, X. Hu, J. Gao, D. Hu, and T. Jancsó. Relationships between land surface temperatures and neighboring environment in highly urbanized areas: seasonal and scale effects analyses of beijing, china. Remote Sensing, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137918893&doi=10.3390%2frs14174340&partnerID=40&md5=03e893b56690ce03aa758266c9537513, doi:10.3390/rs14174340.

[318]

M. Fabian Meyer-Heß. Identification of archaeologically relevant areas using open geodata. KN - Journal of Cartography and Geographic Information, 70(3):107–125, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089247166&doi=10.1007%2fs42489-020-00049-w&partnerID=40&md5=aa9809e2ff2ce602641c8e94f4bae49a, doi:10.1007/s42489-020-00049-w.

[319]

E. Meylemans, G. Creemers, M. de Bie, and J. Paesen. Revealing extensive protohistoric field systems through high resolution lidar data in the northern part of belgium. ARCHAOLOGISCHES KORRESPONDENZBLATT, 45(2):197–213, 2015. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940646573&partnerID=40&md5=62f878f084781ae946564689ef760936.

[320]

Chunping Miao, Shuai Yu, Yuanman Hu, Huiwen Zhang, Xingyuan He, and Wei Chen. Review of methods used to estimate the sky view factor in urban street canyons. BUILDING AND ENVIRONMENT, 168:106497, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074074376&doi=10.1016%2fj.buildenv.2019.106497&partnerID=40&md5=0ec6ed4f381380469d2ff9ebf5dd4fcc, doi:10.1016/j.buildenv.2019.106497.

[321]

Ariane Middel, Jonas Lukasczyk, and Ross Maciejewski. Sky view factors from synthetic fisheye photos for thermal comfort routing—a case study in phoenix, arizona. URBAN PLANNING, 2(1):19–30, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85027725716&doi=10.17645%2fup.v2i1.855&partnerID=40&md5=d9578eabe77e4a355f14a333c0f642a2, doi:10.17645/up.v2i1.855.

[322]

Ariane Middel, Jonas Lukasczyk, Ross Maciejewski, Matthias Demuzere, and Matthias Roth. Sky view factor footprints for urban climate modeling. URBAN CLIMATE, 25:120–134, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046366561&doi=10.1016%2fj.uclim.2018.05.004&partnerID=40&md5=f4954e6099d242cf42072a350287a9a4, doi:10.1016/j.uclim.2018.05.004.

[323]

Maarit Middleton, Jukka Heikkonen, Paavo Nevalainen, Eija Hyvönen, and Raimo Sutinen. Machine learning-based mapping of micro-topographic earthquake-induced paleo-pulju moraines and liquefaction spreads from a digital elevation model acquired through laser scanning. Geomorphology, 358:107099, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85080935968&doi=10.1016%2fj.geomorph.2020.107099&partnerID=40&md5=462d6d6ed0d33b7f38fdf926c6c0485a, doi:10.1016/j.geomorph.2020.107099.

[324]

R. Miranda-Gómez, H. V. Cabadas-Báez, X. Antonio-Némiga, and N. Dávila-Hernández. Geospatial integration in mapping pre-hispanic settlements within aztec empire limits. Virtual Archaeology Review, 13(27):46–65, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135253954&doi=10.4995%2fvar.2022.16106&partnerID=40&md5=674c4e69465bc4a7f71f3cc28db02676, doi:10.4995/var.2022.16106.

[325]

Fabrice Monna, Yury Esin, Jérome Magail, Ludovic Granjon, Nicolas Navarro, Josef Wilczek, Laure Saligny, Sébastien Couette, Anthony Dumontet, and Carmela Chateau. Documenting carved stones by 3d modelling – example of mongolian deer stones. JOURNAL OF CULTURAL HERITAGE, 34:116–128, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046679239&doi=10.1016%2fj.culher.2018.04.021&partnerID=40&md5=bf391ad1cd57a53e1213b2cb804fc2da, doi:10.1016/j.culher.2018.04.021.

[326]

Kelly Monteleone, Amy E. Thompson, and Keith M. Prufer. Virtual cultural landscapes: geospatial visualizations of past environments. Archaeological Prospection, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106326163&doi=10.1002%2farp.1830&partnerID=40&md5=73b439da31493ec9ab31f4bb1dac9c82, doi:10.1002/arp.1830.

[327]

Reinaldo A. Moralejo, Diego Gobbo, Daniel Del Cogliano, and Leandro Pinto. Aplicación de tecnología lidar en el shincal de quimivil, londres, catamarca. ARQUEOLOGIA, 24(3):165, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063462723&doi=10.34096%2farqueologia.t24.n3.5386&partnerID=40&md5=a774f6946f164fecdd31ec19adf4d52b, doi:10.34096/arqueologia.t24.n3.5386.

[328]

Fernando Morales Hernández and Ángel Morillo Cerdán. Nuevas aportaciones sobre el campamento iii de renieblas (soria): ¿castra de nobilior o castra de escipion? CUADERNOS DE PREHISTORIA Y ARQUEOLOGIA-UNIVERSIDAD AUTONOMA DE MADRID, pages 187–214, 2020. doi:10.15366/cupauam2020.46.007.

[329]

Katie M. Moriarty and Clinton W. Epps. Retained satellite information influences performance of gps devices in a forested ecosystem. WILDLIFE SOCIETY BULLETIN, 39(2):349–357, 2015. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84945447381&doi=10.1002%2fwsb.524&partnerID=40&md5=a354efb66ccabcabb0b848be38a263c9, doi:10.1002/wsb.524.

[330]

Á. Morillo, B. X. Currás, A. Orejas, and A. Nobilini. Roman practice camps at trobajo del camino (san andrés de rabanedo) and oteruelo de la valdoncina (león). a preliminary approach. Gladius, 41:91–119, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111492768&doi=10.3989%2fGLADIUS.2021.05&partnerID=40&md5=f9f650dbf6938c9af27be3b54ca7607b, doi:10.3989/GLADIUS.2021.05.

[331]

Holley Moyes and Shane Montgomery. Locating cave entrances using lidar-derived local relief modeling. Geosciences (Switzerland), 9(2):98, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065191449&doi=10.3390%2fgeosciences9020098&partnerID=40&md5=f0a0698215541dd45030a39531e8c088, doi:10.3390/geosciences9020098.

[332]

David Muñoz, Benoit Beckers, Gonzalo Besuievsky, and Gustavo Patow. A technique for massive sky view factor calculations in large cities. INTERNATIONAL JOURNAL OF REMOTE SENSING, 39(12):4040–4058, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054885133&doi=10.1080%2f01431161.2018.1452071&partnerID=40&md5=0b5fec2e62bb48e00111e0cd1aa5aa37, doi:10.1080/01431161.2018.1452071.

[333]

David Muñoz, Gonzalo Besuievsky, and Gustavo Patow. A procedural technique for thermal simulation and visualization in urban environments. BUILDING SIMULATION, 12(6):1013–1031, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068870083&doi=10.1007%2fs12273-019-0549-x&partnerID=40&md5=9a920d0b5bc675968092652694152f8d, doi:10.1007/s12273-019-0549-x.

[334]

Guglielmina Mutani and Valeria Todeschi. Building energy modeling at neighborhood scale. ENERGY EFFICIENCY, 13(7):1353–1386, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088395375&doi=10.1007%2fs12053-020-09882-4&partnerID=40&md5=cf0751f9e20de4a51af33c2a64bc5a66, doi:10.1007/s12053-020-09882-4.

[335]

Bilguunmaa Myagmardulam, Ryu Miura, Fumie Ono, Toshinori Kagawa, Lin Shan, Tadachika Nakayama, Fumihide Kojima, and Baasandash Choijil. Performance evaluation of lora 920 mhz frequency band in a hilly forested area. Electronics (Switzerland), 10(4):502, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100941952&doi=10.3390%2felectronics10040502&partnerID=40&md5=c09571754baae22c143536233cf5e825, doi:10.3390/electronics10040502.

[336]

Ahmed K. Nassar, G. Alan Blackburn, and J. Duncan Whyatt. Dynamics and controls of urban heat sink and island phenomena in a desert city: development of a local climate zone scheme using remotely-sensed inputs. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 51:76–90, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84997113230&doi=10.1016%2fj.jag.2016.05.004&partnerID=40&md5=5c45e0b4125eaee9d578c13a25ba3c7b, doi:10.1016/j.jag.2016.05.004.

[337]

Panagiotis T. Nastos, Emmanuel Vassilakis, Marina-Panagiota P. Nastos, Ioannis Charalampopoulos, and Andreas Matzarakis. Assessment of continuous sky view factor based on ultra-high resolution natural colour images acquired by remotely piloted airborne systems for applications in an urban area of athens. INTERNATIONAL JOURNAL OF REMOTE SENSING, 38(20):5814–5829, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046264738&doi=10.1080%2f01431161.2017.1346845&partnerID=40&md5=35fa12ecb6a67821d89e1ba59b7b58fd, doi:10.1080/01431161.2017.1346845.

[338]

Mihai Niculiță. Geomorphometric methods for burial mound recognition and extraction from high-resolution lidar dems. Sensors (Switzerland), 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079867160&doi=10.3390%2fs20041192&partnerID=40&md5=95931a22991cbd803eec15c1b2b200ef, doi:10.3390/s20041192.

[339]

S. Nión-Álvarez. A methodological approach to identify roman roads using lidar sensing technology and aerial orthoimages. the case of viae xix and xx (nw iberia). Journal of Archaeological Science: Reports, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85136527087&doi=10.1016%2fj.jasrep.2022.103612&partnerID=40&md5=ab8dbbde0ab8601712b57ae1518354eb, doi:10.1016/j.jasrep.2022.103612.

[340]

D. Noack. Gis-based analysis for the detection of medieval ridge-andfurrow soil cultivation patterns within the prignitz region (north-eastern germany). AGIT- Journal fur Angewandte Geoinformatik, 5:60–72, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091979369&doi=10.14627%2f537669006&partnerID=40&md5=3c39f3a1f90252f4ae6f76c9c734a229, doi:10.14627/537669006.

[341]

A. Novak and K. Oštir. Towards better visualisation of alpine quaternary landform features on high-resolution digital elevation models. Remote Sensing, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85118135708&doi=10.3390%2frs13214211&partnerID=40&md5=bc7faf6973a7fe7efb0560cbcb87a183, doi:10.3390/rs13214211.

[342]

E. Oduncu and S. E. Yüksel. An investigation of the effect of neighboring objects to shadow areas on real data based on the physical radiance model. Journal of the Faculty of Engineering and Architecture of Gazi University, 33(3):887–894, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068919599&partnerID=40&md5=20ae65dc62ec000b35dfd38147b9362f.

[343]

E. Oduncu and S. E. Yuksel. An in-depth analysis of hyperspectral target detection with shadow compensation via lidar. Signal Processing: Image Communication, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115030475&doi=10.1016%2fj.image.2021.116427&partnerID=40&md5=78e79a86193f3311a15570ea3354c49b, doi:10.1016/j.image.2021.116427.

[344]

C. Oliveira, S. Aravecchia, C. Pradalier, V. Robin, and S. Devin. The use of remote sensing tools for accurate charcoal kilns' inventory and distribution analysis: comparative assessment and prospective. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121613049&doi=10.1016%2fj.jag.2021.102641&partnerID=40&md5=275da4134fc23a997f1cdf6145299c81, doi:10.1016/j.jag.2021.102641.

[345]

Michael A. O'Neal. An objective approach to defining earthwork geometries using subdecimeter digital elevation models. Geoarchaeology, 27(2):157–165, 2012. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84867355439&doi=10.1002%2fgea.21404&partnerID=40&md5=33b8ff18013ae06c71b0c4fdf62f6b4d, doi:10.1002/gea.21404.

[346]

Hector A. Orengo and Carl Knappett. Toward a definition of minoan agro-pastoral landscapes: results of the survey at palaikastro (crete). AMERICAN JOURNAL OF ARCHAEOLOGY, 122(3):479, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051504574&doi=10.3764%2faja.122.3.0479&partnerID=40&md5=38c19fc0af3c09426f6b95dde0e3f86a, doi:10.3764/aja.122.3.0479.

[347]

Hector A. Orengo and Cameron A. Petrie. Multi-scale relief model (msrm): a new algorithm for the visualization of subtle topographic change of variable size in digital elevation models. Earth Surface Processes and Landforms, 43(6):1361–1369, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041330903&doi=10.1002%2fesp.4317&partnerID=40&md5=d740c9054f0d5735b1ffecea1e22eea7, doi:10.1002/esp.4317.

[348]

X. Ouyang, Y. Dou, J. Yang, X. Chen, and J. Wen. High spatiotemporal rugged land surface temperature downscaling over saihanba forest park, china. Remote Sensing, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132285184&doi=10.3390%2frs14112617&partnerID=40&md5=215c99c2c4e012a8aa1ece4a7dd71fb4, doi:10.3390/rs14112617.

[349]

G. Paliaga, F. Luino, L. Turconi, M. Profeta, Z. Vojinovic, S. Cucchiaro, and F. Faccini. Terraced landscapes as nbss for geo-hydrological hazard mitigation: towards a methodology for debris and soil volume estimations through a lidar survey. Remote Sensing, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137023050&doi=10.3390%2frs14153586&partnerID=40&md5=08dba6c5f0f4ba728bb97fe4e20bb800, doi:10.3390/rs14153586.

[350]

Jamie L. Peeler and Erica A. H. Smithwick. Seed source pattern and terrain have scale-dependent effects on post-fire tree recovery. LANDSCAPE ECOLOGY, 35(9):1945–1959, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088302032&doi=10.1007%2fs10980-020-01071-z&partnerID=40&md5=5ef6517943900c6ee830133ab1e543d6, doi:10.1007/s10980-020-01071-z.

[351]

J. L. Peeler and E.A.H. Smithwick. Interactions between landscape and local factors inform spatial action planning in post-fire forest environments. LANDSCAPE ECOLOGY, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113268428&doi=10.1007%2fs10980-021-01325-4&partnerID=40&md5=bcc2490189e453251d01a5363e2f7845, doi:10.1007/s10980-021-01325-4.

[352]

R. Perarnau, A. Devos, A. Quiquerez, J. Brenot, P. Taborelli, S. Ortonovi, and B. Furlani. Assessing the role of slope, lithology and land use in the formation and conservation of war-related geomorphic features (case study of ww1 railway artillery in montagne de reims, marne, france). APPLIED GEOGRAPHY, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127352524&doi=10.1016%2fj.apgeog.2022.102691&partnerID=40&md5=4c5bf5a6c253cfb8b4e69079235e68ce, doi:10.1016/j.apgeog.2022.102691.

[353]

Anna Petrasova, Brendan Harmon, Vaclav Petras, and Helena Mitasova. Tangible Modeling with Open Source GIS. Tangible Modeling with Open Source GIS. Springer International Publishing, Cham, 2015. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85012134759&doi=10.1007%2f978-3-319-25775-4&partnerID=40&md5=33334f0bbe4ca0b0149c7c98e3d15217, doi:10.1007/978-3-319-25775-4.

[354]

I. Pikirayi, F. Sulas, B. Nxumalo, M. E. Sagiya, D. Stott, S. M. Kristiansen, S. Chirikure, and T. Musindo. Climate-smart harvesting and storing of water: the legacy of dhaka pits at great zimbabwe. ANTHROPOCENE, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143868586&doi=10.1016%2fj.ancene.2022.100357&partnerID=40&md5=d74f56c0382ff3832767fe8cabbc1545, doi:10.1016/j.ancene.2022.100357.

[355]

Thomas Pingel and Keith Clarke. Perceptually shaded slope maps for the visualization of digital surface models. Cartographica: The International Journal for Geographic Information and Geovisualization, 49(4):225–240, 2014. doi:10.3138/carto.49.4.2141.

[356]

Thomas J. Pingel, Keith Clarke, and Anabel Ford. Bonemapping: a lidar processing and visualization technique in support of archaeology under the canopy. Cartography and Geographic Information Science, 42(sup1):18–26, 2015. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84939792012&doi=10.1080%2f15230406.2015.1059171&partnerID=40&md5=e8761d72474a3e32e15ff0ae77316233, doi:10.1080/15230406.2015.1059171.

[357]

Helena Saraiva Koenow Pinheiro, Waldir de Carvalho Junior, César Silva Da Chagas, Lúcia Helena Cunha dos Anjos, and Phillip Ray Owens. Prediction of topsoil texture through regression trees and multiple linear regressions. REVISTA BRASILEIRA DE CIENCIA DO SOLO, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045696180&doi=10.1590%2f18069657rbcs20170167&partnerID=40&md5=e16df95362ca3e8bc3992f0fcfc20f40, doi:10.1590/18069657rbcs20170167.

[358]

Primož Pipan and Žiga Kokalj. Transformation of the jeruzalem hills cultural landscape with modern vineyard terraces. Acta Geographica Slovenica, 57(2):149–162, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019745053&doi=10.3986%2fAGS.4629&partnerID=40&md5=95ae46abca4dfbf6d6c0564012a41d4c, doi:10.3986/AGS.4629.

[359]

Tomislav Popit, Blaž Supej, Žiga Kokalj, and Timotej Verbovšek. Comparison of methods for geomorphometric analyzes of surface roughness in the vipava valley. GEODETSKI VESTNIK, 60(02):227–240, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84977474276&doi=10.15292%2fgeodetski-vestnik.2016.02.227-240&partnerID=40&md5=c81425c7c42d9d500684843564c2c3c5, doi:10.15292/geodetski-vestnik.2016.02.227-240.

[360]

T. Popit, B. Rožič, A. Šmuc, A. Novak, and T. Verbovšek. Using a lidar-based height variability method for recognizing and analyzing fault displacement and related fossil mass movement in the vipava valley, sw slovenia. Remote Sensing, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129178184&doi=10.3390%2frs14092016&partnerID=40&md5=2c40b3e3a048be8a9312509c7656237b, doi:10.3390/rs14092016.

[361]

Sara Popović, Davor Bulić, Robert Matijašić, Katarina Gerometta, and Giovanni Boschian. Roman land division in istria, croatia: historiography, lidar, structural survey and excavations. Mediterranean Archaeology and Archaeometry, 21(1):165–178, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099256112&doi=10.5281%2fzenodo.4394051&partnerID=40&md5=cf328514f874ad245413608abf304002, doi:10.5281/zenodo.4394051.

[362]

S. J. Price, M. J. Adams, and Y. Tepper. An integrated spatial approach to archaeological prospection using gis and pedestrian survey data at tell abu shusha, israel. Archaeological Prospection, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144045767&doi=10.1002%2farp.1888&partnerID=40&md5=a5eb4d07e11ddb627b060c18b7779ef6, doi:10.1002/arp.1888.

[363]

Keith M. Prufer, Amy E. Thompson, and Douglas J. Kennett. Evaluating airborne lidar for detecting settlements and modified landscapes in disturbed tropical environments at uxbenká, belize. Journal of Archaeological Science, 57:1–13, 2015. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84924151275&doi=10.1016%2fj.jas.2015.02.013&partnerID=40&md5=be65b22fd99a80b7f6a58c2498f440a2, doi:10.1016/j.jas.2015.02.013.

[364]

JinLing Quan. Enhanced geographic information system-based mapping of local climate zones in beijing, china. Science China Technological Sciences, 62(12):2243–2260, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068458941&doi=10.1007%2fs11431-018-9417-6&partnerID=40&md5=f59a860041ecfcbe02bb3cbe3fa2ac41, doi:10.1007/s11431-018-9417-6.

[365]

Włodzimierz Rączkowski. Power and/or penury of visualizations: some thoughts on remote sensing data and products in archaeology. Remote Sensing, 12(18):2996, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092152307&doi=10.3390%2fRS12182996&partnerID=40&md5=1189868110d9d8f5d0e97c3b097d5fb6, doi:10.3390/RS12182996.

[366]

Mario Ramírez Galán. If the archaeological context is missing: the use of lidar prospection to uncover features at the medieval christian position on malvecino hill (alcalá de henares, spain). Archaeological Prospection, 28(1):25–33, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088292232&doi=10.1002%2farp.1791&partnerID=40&md5=9dba0ae794b2a7fa116a100dff6c780a, doi:10.1002/arp.1791.

[367]

L. A. Reeder-Myers, W. A. Goodwin, A. J. Figueroa, A. I. Domic, and J. C. Fernandez-Diaz. Cultural landscapes of resilience and vulnerability: the selin farm site, northeastern honduras. Journal of Field Archaeology, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142141279&doi=10.1080%2f00934690.2022.2141888&partnerID=40&md5=b59a47472fc0de57830706f1e47b807b, doi:10.1080/00934690.2022.2141888.

[368]

Naveed Ur Rehman and Mubashir Ali Siddiqui. A novel method for determining sky view factor for isotropic diffuse radiations for a collector in obstacles-free or urban sites. JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 7(3):033110, 2015. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929992091&doi=10.1063%2f1.4921386&partnerID=40&md5=983133279e66fbd39256c198cee5b148, doi:10.1063/1.4921386.

[369]

Jeroen de Reu, Jan Trachet, Pieter Laloo, and Wim de Clercq. From low cost uav survey to high resolution topographic data: developing our understanding of a medieval outport of bruges. Archaeological Prospection, 23(4):335–346, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84990040770&doi=10.1002%2farp.1547&partnerID=40&md5=a598cd85a64f95f31adfa7a2e4684008, doi:10.1002/arp.1547.

[370]

Ole Risbøl, Ole Martin Bollandsås, Anneli Nesbakken, Hans Ole Ørka, Erik Næsset, and Terje Gobakken. Interpreting cultural remains in airborne laser scanning generated digital terrain models: effects of size and shape on detection success rates. Journal of Archaeological Science, 40(12):4688–4700, 2013. doi:10.1016/j.jas.2013.07.002.

[371]

Ole Risbøl, Daniel Langhammer, Esben Schlosser Mauritsen, and Oula Seitsonen. Employment, utilization, and development of airborne laser scanning in fenno-scandinavian archaeology—a review. Remote Sensing, 12(9):1411, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085972258&doi=10.3390%2fRS12091411&partnerID=40&md5=d593c957be01da7dc1576a197585c88d, doi:10.3390/RS12091411.

[372]

Mark J. Rochelo, Christian Davenport, and Donna Selch. Revealing pre-historic native american belle glade earthworks in the northern everglades utilizing airborne lidar. Journal of Archaeological Science: Reports, 2:624–643, 2015. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84937889559&doi=10.1016%2fj.jasrep.2014.11.009&partnerID=40&md5=f8eb794fb60280212fd1c5003d3668e0, doi:10.1016/j.jasrep.2014.11.009.

[373]

J. Rodzik, B. Niezabitowska-Wiśniewska, J. Nitychoruk, J. Budziszewski, and M. Jakubczak. Geological and geomorphologic conditions and traces of prehistoric and historic human settlements in the vicinity of ulów (roztocze region, southeastern poland). Studia Quaternaria, 34(2):83–97, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039854112&doi=10.1515%2fsqua-2017-007&partnerID=40&md5=bca86482f967f7c74681b0a72d1c6dc5, doi:10.1515/squa-2017-007.

[374]

Johanna Roiha, Einari Heinaro, and Markus Holopainen. The hidden cairns—a case study of drone-based als as an archaeological site survey method. Remote Sensing, 13(10):2010, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107017199&doi=10.3390%2frs13102010&partnerID=40&md5=4688942898ded5336a74b503382f31de, doi:10.3390/rs13102010.

[375]

Tanguy Rolland, Fabrice Monna, Jérôme Magail, Yuri Esin, Nicolas Navarro, Josef Wilczek, Jamiyan-Ombo Gantulga, and Carmela Chateau-Smith. Documenting carved stones from 3d models. part ii — ambient occlusion to reveal carved parts. JOURNAL OF CULTURAL HERITAGE, 49:28–37, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106294114&doi=10.1016%2fj.culher.2021.03.006&partnerID=40&md5=9de66ef5731ba9463ceb13c83c651d44, doi:10.1016/j.culher.2021.03.006.

[376]

T. Rolland, F. Monna, J. F. Buoncristiani, J. Magail, Y. Esin, B. Bohard, and C. Chateau-Smith. Volumetric obscurance as a new tool to better visualize relief from digital elevation models. Remote Sensing, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126280532&doi=10.3390%2frs14040941&partnerID=40&md5=cb21f269d2c3128f137e57aa40236b6f, doi:10.3390/rs14040941.

[377]

Jakob Rom, Florian Haas, Manuel Stark, Fabian Dremel, Michael Becht, Karin Kopetzky, Christoph Schwall, Michael Wimmer, Norbert Pfeifer, Mahmoud Mardini, and Hermann Genz. Between land and sea: an airborne lidar field survey to detect ancient sites in the chekka region/lebanon using spatial analyses. OPEN ARCHAEOLOGY, 6(1):248–268, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096811647&doi=10.1515%2fopar-2020-0113&partnerID=40&md5=90f154afd8a39e8b6d6e2f64fea4cf18, doi:10.1515/opar-2020-0113.

[378]

Anamaria Roman, Tudor-Mihai Ursu, Sorina Fărcaş, Vlad-Andrei Lăzărescu, and Coriolan Horaţiu Opreanu. An integrated airborne laser scanning approach to forest management and cultural heritage issues: a case study at porolissum, romania. ANNALS OF FOREST RESEARCH, 0(0):171–187, 2014. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021700776&doi=10.15287%2fafr.2016.755&partnerID=40&md5=b7e1e6b631c2bfd6f329144114e2fd52, doi:10.15287/afr.2016.755.

[379]

Anamaria Roman, Tudor-Mihai Ursu, Vlad-Andrei Lăzărescu, Coriolan Horaţiu Opreanu, and Sorina Fărcaş. Visualization techniques for an airborne laser scanning-derived digital terrain model in forested steep terrain: detecting archaeological remains in the subsurface. Geoarchaeology, 32(5):549–562, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019145032&doi=10.1002%2fgea.21621&partnerID=40&md5=35f2ee577087909e20f12fa0f2ab5244, doi:10.1002/gea.21621.

[380]

Robert M. Rosenswig, Ricardo López-Torrijos, Caroline E. Antonelli, and Rebecca R. Mendelsohn. Lidar mapping and surface survey of the izapa state on the tropical piedmont of chiapas, mexico. Journal of Archaeological Science, 40(3):1493–1507, 2013. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84871448867&doi=10.1016%2fj.jas.2012.10.034&partnerID=40&md5=8013deb9f62f343c450309a1b99df493, doi:10.1016/j.jas.2012.10.034.

[381]

Robert M. Rosenswig, Ricardo López-Torrijos, and Caroline E. Antonelli. Lidar data and the izapa polity: new results and methodological issues from tropical mesoamerica. ARCHAEOLOGICAL AND ANTHROPOLOGICAL SCIENCES, 7(4):487–504, 2015. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84936868111&doi=10.1007%2fs12520-014-0210-7&partnerID=40&md5=6edf3d722c57a099b4b2d1728b1a7f16, doi:10.1007/s12520-014-0210-7.

[382]

Laure Roupioz, Francoise Nerry, Li Jia, and Massimo Menenti. Improved surface reflectance from remote sensing data with sub-pixel topographic information. Remote Sensing, 6(11):10356–10374, 2014. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84912059184&doi=10.3390%2frs61110356&partnerID=40&md5=a1cd4fb39421a3b07f169fb33a0a283e, doi:10.3390/rs61110356.

[383]

Sebastian Różycki, Rafał Zapłata, Jerzy Karczewski, Andrzej Ossowski, and Jacek Tomczyk. Integrated archaeological research: archival resources, surveys, geophysical prospection and excavation approach at an execution and burial site: the german nazi labour camp in treblinka. Geosciences (Switzerland), 10(9):336, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090811059&doi=10.3390%2fgeosciences10090336&partnerID=40&md5=b8e05d38c209ef400a112ef87aca7611, doi:10.3390/geosciences10090336.

[384]

Paweł Rutkiewicz, Ireneusz Malik, Małgorzata Wistuba, and Aleksandra Osika. High concentration of charcoal hearth remains as legacy of historical ferrous metallurgy in southern poland. Quaternary International, 512:133–143, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064264371&doi=10.1016%2fj.quaint.2019.04.015&partnerID=40&md5=419661a9b2334d85965227593da16a08, doi:10.1016/j.quaint.2019.04.015.

[385]

F. Sánchez Díaz, L. García Sanjuán, and T. Rivera Jiménez. Potential and limitations of lidar altimetry in archaeological survey. copper age and bronze age settlements in southern iberia. Archaeological Prospection, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131855188&doi=10.1002%2farp.1869&partnerID=40&md5=b0d865b086f0e56b9cb155db9194eb04, doi:10.1002/arp.1869.

[386]

S. Sanlang, S. Cao, M. Du, Y. Mo, Q. Chen, and W. He. Integrating aerial lidar and very-high-resolution images for urban functional zone mapping. Remote Sensing, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109959703&doi=10.3390%2frs13132573&partnerID=40&md5=f45ac473070889b960a157a516984098, doi:10.3390/rs13132573.

[387]

P. Sapirstein. The first doric temple in sicily, its builder, and ig xiv 1. Hesperia, 90(3):411–477, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120851461&doi=10.2972%2fhesperia.90.3.0411&partnerID=40&md5=7ad4d1555f8951f7c826c7075dce0a2f, doi:10.2972/hesperia.90.3.0411.

[388]

Sanna Saunaluoma, Niko Anttiroiko, and Justin Moat. Uav survey at archaeological earthwork sites in the brazilian state of acre, southwestern amazonia. Archaeological Prospection, 26(4):325–331, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070841005&doi=10.1002%2farp.1747&partnerID=40&md5=50ca19741f8fefa18d846a3b5f4aa492, doi:10.1002/arp.1747.

[389]

M. Scarano and F. Mancini. Assessing the relationship between sky view factor and land surface temperature to the spatial resolution. INTERNATIONAL JOURNAL OF REMOTE SENSING, 38(23):6910–6929, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054263948&doi=10.1080%2f01431161.2017.1368099&partnerID=40&md5=d0d6c3babb731b45f06c2d2a56adc2d1, doi:10.1080/01431161.2017.1368099.

[390]

Whittaker Schroder, Timothy Murtha, Charles Golden, Armando Anaya Hernández, Andrew Scherer, Shanti Morell-Hart, Angélica Almeyda Zambrano, Eben Broadbent, and Madeline Brown. The lowland maya settlement landscape: environmental lidar and ecology. Journal of Archaeological Science: Reports, 33:102543, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091084297&doi=10.1016%2fj.jasrep.2020.102543&partnerID=40&md5=6e649e61421a5d038047ba3a4bd64ab0, doi:10.1016/j.jasrep.2020.102543.

[391]

Whittaker Schroder, Timothy Murtha, Eben N. Broadbent, and Angélica M. Almeyda Zambrano. A confluence of communities: households and land use at the junction of the upper usumacinta and lacantún rivers, chiapas, mexico. World Archaeology, pages 1–28, 2021. doi:10.1080/00438243.2021.1930135.

[392]

Jennifer von Schwerin, Heather Richards-Rissetto, Fabio Remondino, Maria Grazia Spera, Michael Auer, Nicolas Billen, Lukas Loos, Laura Stelson, and Markus Reindel. Airborne lidar acquisition, post-processing and accuracy-checking for a 3d webgis of copan, honduras. Journal of Archaeological Science: Reports, 5:85–104, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84946866858&doi=10.1016%2fj.jasrep.2015.11.005&partnerID=40&md5=605f073d302b57f411cddb5875e2dc5a, doi:10.1016/j.jasrep.2015.11.005.

[393]

Oula Seitsonen and Janne Ikäheimo. Detecting archaeological features with airborne laser scanning in the alpine tundra of sápmi, northern finland. Remote Sensing, 13(8):1599, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105051031&doi=10.3390%2frs13081599&partnerID=40&md5=66766b09b671e73ae57a435ff4e3a78f, doi:10.3390/rs13081599.

[394]

Christopher Sevara, Michael Pregesbauer, Michael Doneus, Geert Verhoeven, and Immo Trinks. Pixel versus object — a comparison of strategies for the semi-automated mapping of archaeological features using airborne laser scanning data. Journal of Archaeological Science: Reports, 5:485–498, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84954512314&doi=10.1016%2fj.jasrep.2015.12.023&partnerID=40&md5=eb0980609006defefc826d5cf76359bc, doi:10.1016/j.jasrep.2015.12.023.

[395]

M. Slámová, N. B. Pažinová, I. Belčáková, J. Beljak, and P. Maliniak. Identification of historical trackways in forests using contextual geospatial analyses. Archaeological Prospection, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141392882&doi=10.1002%2farp.1882&partnerID=40&md5=cab807a193b4a5876000fe44d70c132a, doi:10.1002/arp.1882.

[396]

Devin F. Smith, Steven T. Goldsmith, Brendan A. Harmon, Jorge A. Espinosa, and Russell S. Harmon. Physical controls and enso event influence on weathering in the panama canal watershed. SCIENTIFIC REPORTS, 10(1):10861, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087348035&doi=10.1038%2fs41598-020-67797-7&partnerID=40&md5=cd477ba133cb3430c3b0fab9023be7ab, doi:10.1038/s41598-020-67797-7.

[397]

Aleš Smrekar, Mateja Breg Valjavec, Katarina Polajnar Horvat, and Jernej Tiran. The geography of urban environmental protection in slovenia: the case of ljubljana. Acta Geographica Slovenica, 59(3):5–70, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085936664&doi=10.3986%2fAGS.7638&partnerID=40&md5=f89b8c564f3dbd4290c85f95da77bf06, doi:10.3986/AGS.7638.

[398]

Zbyněk Sokol, Vojtěch Bližňák, Pavel Sedlák, Petr Zacharov, Petr Pešice, and Miroslav Škuthan. Ensemble forecasts of road surface temperatures. ATMOSPHERIC RESEARCH, 187:33–41, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85007391676&doi=10.1016%2fj.atmosres.2016.12.010&partnerID=40&md5=9d56a3c4e0bfa85a40c9bce13524f4c7, doi:10.1016/j.atmosres.2016.12.010.

[399]

Ion Sola, Maria Gonzalez-Audicana, Jesus Alvarez-Mozos, and Jose Luis Torres. Synthetic images for evaluating topographic correction algorithms. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 52(3):1799–1810, 2014. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84891555451&doi=10.1109%2fTGRS.2013.2255296&partnerID=40&md5=c5cada5eaa52cbf630319421d78441c4, doi:10.1109/TGRS.2013.2255296.

[400]

Ion Sola, María González-Audícana, and Jesús Álvarez-Mozos. Validation of a simplified model to generate multispectral synthetic images. Remote Sensing, 7(3):2942–2951, 2015. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84926315348&doi=10.3390%2frs70302942&partnerID=40&md5=28364e169a2062ae9ae3c6fc247c9eae, doi:10.3390/rs70302942.

[401]

Maja Somrak, Sašo Džeroski, and Žiga Kokalj. Learning to classify structures in als-derived visualizations of ancient maya settlements with cnn. Remote Sensing, 12(14):2215, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088632320&doi=10.3390%2frs12142215&partnerID=40&md5=a917f9c1d5fd4ffa859277b4a70a6fbf, doi:10.3390/rs12142215.

[402]

Till Sonnemann, Jorge Ulloa Hung, and Corinne Hofman. Mapping indigenous settlement topography in the caribbean using drones. Remote Sensing, 8(10):791, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019720157&doi=10.3390%2frs8100791&partnerID=40&md5=5b0e85426b37c72a5171a4bf39a64e4e, doi:10.3390/rs8100791.

[403]

Ivan Šprajc, Nicholas P. Dunning, Jasmina Štajdohar, Quintin Hernández Gómez, Israel Chato López, Aleš Marsetič, Joseph W. Ball, Sara Dzul Góngora, Octavio Q. Esparza Olguín, Atasta Flores Esquivel, and Žiga Kokalj. Ancient maya water management, agriculture, and society in the area of chactún, campeche, mexico. JOURNAL OF ANTHROPOLOGICAL ARCHAEOLOGY, 61:101261, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098711820&doi=10.1016%2fj.jaa.2020.101261&partnerID=40&md5=f0ce6be5bad962f266baefad77b49d13, doi:10.1016/j.jaa.2020.101261.

[404]

I. Šprajc, A. Marsetič, J. Štajdohar, S. D. Góngora, J. W. Ball, O. E. Olguín, and Ž. Kokalj. Archaeological landscape, settlement dynamics, and sociopolitical organization in the chactún area of the central maya lowlands. PLoS ONE, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123352170&doi=10.1371%2fjournal.pone.0262921&partnerID=40&md5=7e2880fcb466a8637a4e77ca8d10f63d, doi:10.1371/journal.pone.0262921.

[405]

Adam P. Spring and Caradoc Peters. Developing a low cost 3d imaging solution for inscribed stone surface analysis. Journal of Archaeological Science, 52:97–107, 2014. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907168864&doi=10.1016%2fj.jas.2014.08.017&partnerID=40&md5=ec043967b92d485f4255df764cf559e6, doi:10.1016/j.jas.2014.08.017.

[406]

C. Stal, C. Covataru, J. Müller, V. Parnic, T. Ignat, R. Hofmann, and C. Lazar. Supporting long-term archaeological research in southern romania chalcolithic sites using multi-platform uav mapping. Drones, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140622841&doi=10.3390%2fdrones6100277&partnerID=40&md5=58132f1b8b1720d1e71c100e7d6e8046, doi:10.3390/drones6100277.

[407]

Marialuce Stanganelli and Carlo Gerundo. Understanding the role of urban morphology and green areas configuration during heat waves. International Journal of Agricultural and Environmental Information Systems, 8(2):50–64, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016060699&doi=10.4018%2fIJAEIS.2017040104&partnerID=40&md5=d8141da064fe48da040710caac596255, doi:10.4018/IJAEIS.2017040104.

[408]

Lenka Starková. Toward a high-definition remote sensing approach to the study of deserted medieval cities in the near east. Geosciences, 10(9):369, 2020. doi:10.3390/geosciences10090369.

[409]

M.-M. Ștefan, D. Ștefan, V. Sîrbu, S.-C. Ailincăi, and A. Țârlea. The emergence of inland settlements in northern dobruja at the end of the archaic period. a newly surveyed settlement on celic dere valley. Peuce, 2021(19):79–122, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120037634&partnerID=40&md5=8d316e1abcd5ab622a969106ae4d2bbc.

[410]

C. R. Steger, B. Steger, and C. Schär. Horayzon v1.2: an efficient and flexible ray-tracing algorithm to compute horizon and sky view factor. Geoscientific Model Development, 15(17):6817–6840, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140410867&doi=10.5194%2fgmd-15-6817-2022&partnerID=40&md5=8520592dfe9d5970f3e2838d491bc7bb, doi:10.5194/gmd-15-6817-2022.

[411]

Ronan Steinmann, Jean-Pierre Garcia, Annie Dumont, and Amélie Quiquerez. Aspects méthodologiques de l'approche intégrée des comblements postglaciaires : apports pour la reconstitution de la dynamique fluviale de la loire au cours de l'holocène. Geomorphologie: Relief, Processus, Environnement, 23(1):83–104, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030310006&doi=10.4000%2fgeomorphologie.11650&partnerID=40&md5=7ea9c8ac734c6260fd90d2ebf70dce12, doi:10.4000/geomorphologie.11650.

[412]

Krzysztof Stereńczak, Rafał Zapłata, Jarosław Wójcik, Bartłomiej Kraszewski, Miłosz Mielcarek, Krzysztof Mitelsztedt, Małgorzata Białczak, Grzegorz Krok, Łukasz Kuberski, Anna Markiewicz, Aneta Modzelewska, Karolina Parkitna, Żaneta Piasecka, Kamil Pilch, Karol Rzeczycki, Rafał Sadkowski, Martyna Wietecha, Piotr Rysiak, Klaus von Gadow, and Chris J. Cieszewski. Als-based detection of past human activities in the białowieża forest—new evidence of unknown remains of past agricultural systems. Remote Sensing, 12(16):2657, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090357412&doi=10.3390%2fRS12162657&partnerID=40&md5=34d16c2d35f3fafde6f8487ae0c53c6f, doi:10.3390/RS12162657.

[413]

Birger Stichelbaut, Wouter Gheyle, Timothy Saey, Veerle van Eetvelde, Marc van Meirvenne, Nicolas Note, Hanne van den Berghe, and Jean Bourgeois. The first world war from above and below. historical aerial photographs and mine craters in the ypres salient. APPLIED GEOGRAPHY, 66:64–72, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84949309354&doi=10.1016%2fj.apgeog.2015.11.020&partnerID=40&md5=4e746984175f3dd6715b6701da174cf0, doi:10.1016/j.apgeog.2015.11.020.

[414]

Wesley D. Stoner, Barbara L. Stark, Amber VanDerwarker, and Kyle R. Urquhart. Between land and water: hydraulic engineering in the tlalixcoyan basin, veracruz, mexico. JOURNAL OF ANTHROPOLOGICAL ARCHAEOLOGY, 61:101264, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100110766&doi=10.1016%2fj.jaa.2020.101264&partnerID=40&md5=c6da8323397616a79d96c5a008c6aabf, doi:10.1016/j.jaa.2020.101264.

[415]

M. Storch, T. Jarmer, M. Adam, and N. de Lange. Systematic approach for remote sensing of historical conflict landscapes with uav-based laserscanning. Sensors, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121768577&doi=10.3390%2fs22010217&partnerID=40&md5=fb2b47fac28ad0a419aa21a9053c745b, doi:10.3390/s22010217.

[416]

David Stott, Søren Munch Kristiansen, Achim Lichtenberger, and Rubina Raja. Mapping an ancient city with a century of remotely sensed data. Proceedings of the National Academy of Sciences of the United States of America, 115(24):E5450–E5458, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048548316&doi=10.1073%2fpnas.1721509115&partnerID=40&md5=cb3e4a5184092110b66619f65ddd127f, doi:10.1073/pnas.1721509115.

[417]

B. Štular. The use of lidar-derived relief models in archaeological topography: the kobarid region (slovenia) case study. Arheoloski Vestnik, 62:393–432, 2011. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856556104&partnerID=40&md5=72bd5538d91ab48a0686bfe8be37cedf.

[418]

Benjamin Štular, Žiga Kokalj, Krištof Oštir, and Laure Nuninger. Visualization of lidar-derived relief models for detection of archaeological features. Journal of Archaeological Science, 39(11):3354–3360, 2012. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84864320409&doi=10.1016%2fj.jas.2012.05.029&partnerID=40&md5=bfa3c4b240a57c557bfe2c792b134c55, doi:10.1016/j.jas.2012.05.029.

[419]

Benjamin Štular, Stefan Eichert, and Edisa Lozić. Airborne lidar point cloud processing for archaeology. pipeline and qgis toolbox. Remote Sensing, 13(16):3225, 2021. doi:10.3390/rs13163225.

[420]

Benjamin Štular, Edisa Lozić, and Stefan Eichert. Airborne lidar-derived digital elevation model for archaeology. Remote Sensing, 13(9):1855, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106495800&doi=10.3390%2frs13091855&partnerID=40&md5=402b551b153e03cb1d745136915f4450, doi:10.3390/rs13091855.

[421]

B. Štular and E. Lozic. Airborne lidar data in landscape archaeology. an introduction for non-archaeologists. IT - Information Technology, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135498653&doi=10.1515%2fitit-2022-0001&partnerID=40&md5=44faae83985c7be0b0fb211acb854a30, doi:10.1515/itit-2022-0001.

[422]

J. W. Suh, E. Anderson, W. Ouimet, K. M. Johnson, and C. Witharana. Mapping relict charcoal hearths in new england using deep convolutional neural networks and lidar data. Remote Sensing, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119718322&doi=10.3390%2frs13224630&partnerID=40&md5=56292b1825b1fdf919712ef92066a63a, doi:10.3390/rs13224630.

[423]

M. Szczęch and M. Cieszkowski. Geology of the magura nappe, south-western gorce mountains (outer carpathians, poland). Journal of Maps, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110881206&doi=10.1080%2f17445647.2021.1950579&partnerID=40&md5=cccfa84973b97b30da4e9aae93b2219d, doi:10.1080/17445647.2021.1950579.

[424]

Atsushi Takizawa and Hina Kinugawa. Deep learning model to reconstruct 3d cityscapes by generating depth maps from omnidirectional images and its application to visual preference prediction. Design Science, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096133851&doi=10.1017%2fdsj.2020.27&partnerID=40&md5=a6583c544961cc4b04185596fa4794f3, doi:10.1017/dsj.2020.27.

[425]

M. Tanu, W. Amponsah, B. Yahaya, E. Bessah, S. O. Ansah, C. S. Wemegah, and W. A. Agyare. Evaluation of global solar radiation, cloudiness index and sky view factor as potential indicators of ghana's solar energy resource. Scientific African, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120163475&doi=10.1016%2fj.sciaf.2021.e01061&partnerID=40&md5=0e83cd1f37b97118bf408b8d9ebf5b62, doi:10.1016/j.sciaf.2021.e01061.

[426]

Paolo Tarolli, Wenfang Cao, Giulia Sofia, Damian Evans, and Erle C. Ellis. From features to fingerprints: a general diagnostic framework for anthropogenic geomorphology. Progress in Physical Geography: Earth and Environment, 43(1):95–128, 2019. doi:10.1177/0309133318825284.

[427]

Simone Tarquini and Luca Nannipieri. The 10 m-resolution tinitaly dem as a trans-disciplinary basis for the analysis of the italian territory: current trends and new perspectives. Geomorphology, 281:108–115, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85009736240&doi=10.1016%2fj.geomorph.2016.12.022&partnerID=40&md5=54e4951c849b02a2cb63e3c4f844617b, doi:10.1016/j.geomorph.2016.12.022.

[428]

Richard Thér. Ceramic technology. how to reconstruct and describe pottery-forming practices. ARCHAEOLOGICAL AND ANTHROPOLOGICAL SCIENCES, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087856600&doi=10.1007%2fs12520-020-01131-0&partnerID=40&md5=2044c95db2ae53c3e83b2fd0f25f3630, doi:10.1007/s12520-020-01131-0.

[429]

Amy E. Thompson. Detecting classic maya settlements with lidar-derived relief visualizations. Remote Sensing, 12(17):2838, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095110114&doi=10.3390%2frs12172838&partnerID=40&md5=29dc203b3b65750de9edf138153e4d52, doi:10.3390/rs12172838.

[430]

Alma Elizabeth Thuestad, Ole Risbøl, Jan Ingolf Kleppe, Stine Barlindhaug, and Elin Rose Myrvoll. Archaeological surveying of subarctic and arctic landscapes: comparing the performance of airborne laser scanning and remote sensing image data. Sustainability (Switzerland), 13(4):1917, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100870449&doi=10.3390%2fsu13041917&partnerID=40&md5=6b3f66afb6b29328050df1d316903e5f, doi:10.3390/su13041917.

[431]

Yunyu Tian, Weiqi Zhou, Yuguo Qian, Zhong Zheng, and Jingli Yan. The effect of urban 2d and 3d morphology on air temperature in residential neighborhoods. LANDSCAPE ECOLOGY, 34(5):1161–1178, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065498028&doi=10.1007%2fs10980-019-00834-7&partnerID=40&md5=142efe36d8d6ddbb0c0ba1336aae6ab2, doi:10.1007/s10980-019-00834-7.

[432]

Y. Tian, P. Desouza, S. Mora, X. Yao, F. Duarte, L. K. Norford, H. Lin, and C. Ratti. Evaluating the meteorological effects on the urban form-air quality relationship using mobile monitoring. Environmental Science and Technology, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124342510&doi=10.1021%2facs.est.1c04854&partnerID=40&md5=5abc07b7b9ffff333024c92679047b6d, doi:10.1021/acs.est.1c04854.

[433]

Anna Tirpáková, Jana Vojteková, Matej Vojtek, and Ivona Vlkolinská. Using fuzzy logic to analyze the spatial distribution of pottery in unstratified archaeological sites: the case of the pobedim hillfort (slovakia). Land, 10(2):103, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099939445&doi=10.3390%2fland10020103&partnerID=40&md5=442c5a61f0a5d0620bbcf4d8a8b48562, doi:10.3390/land10020103.

[434]

Ali Torabi Haghighi, Hamid Darabi, Zahra Karimidastenaei, Ali Akbar Davudirad, Sajad Rouzbeh, Omid Rahmati, Farzaneh Sajedi-Hosseini, and Björn Klöve. Land degradation risk mapping using topographic, human-induced, and geo-environmental variables and machine learning algorithms, for the pole-doab watershed, iran. ENVIRONMENTAL EARTH SCIENCES, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098271591&doi=10.1007%2fs12665-020-09327-2&partnerID=40&md5=31949c0d5755e2288b30f98e03962bba, doi:10.1007/s12665-020-09327-2.

[435]

David Torregrosa-Fuentes, Yolanda Spairani Berrio, José Antonio Huesca Tortosa, Jaime Cuevas González, and Adrián José Torregrosa Fuentes. Aplicación de la fotogrametría automatizada y de técnicas de iluminación con herramientas sig para la visualización y el análisis de una piedra con relieves antropomorfos. Virtual Archaeology Review, 9(19):114, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050307101&doi=10.4995%2fvar.2018.9531&partnerID=40&md5=a00686be82838849187f2053a4c1caac, doi:10.4995/var.2018.9531.

[436]

Zsuzsanna Tóth, Stephen McCarron, Andrew J. Wheeler, Stefan Wenau, Stephen Davis, Aaron Lim, and Volkhard Spiess. Geomorphological and seismostratigraphic evidence for multidirectional polyphase glaciation of the northern celtic sea. JOURNAL OF QUATERNARY SCIENCE, 35(3):465–478, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083540653&doi=10.1002%2fjqs.3189&partnerID=40&md5=e8e3616fac65ffcaed9eb5e094696178, doi:10.1002/jqs.3189.

[437]

Jean-Pierre Toumazet, Franck Vautier, Erwan Roussel, and Bertrand Dousteyssier. Automatic detection of complex archaeological grazing structures using airborne laser scanning data. Journal of Archaeological Science: Reports, 12:569–579, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015241986&doi=10.1016%2fj.jasrep.2017.03.012&partnerID=40&md5=e0db0e3c99625cd93f5bf0fd97fba1b4, doi:10.1016/j.jasrep.2017.03.012.

[438]

Øivind Due Trier and Lars Holger Pilø. Automatic detection of pit structures in airborne laser scanning data. Archaeological Prospection, 19(2):103–121, 2012. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861895524&doi=10.1002%2farp.1421&partnerID=40&md5=db8cee98b430ca81327230c67e7d57d0, doi:10.1002/arp.1421.

[439]

Øivind Due Trier, Maciel Zortea, and Christer Tonning. Automatic detection of mound structures in airborne laser scanning data. Journal of Archaeological Science: Reports, 2:69–79, 2015. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84922698876&doi=10.1016%2fj.jasrep.2015.01.005&partnerID=40&md5=447f4ab82a49609349ba7cc4c8c5ce05, doi:10.1016/j.jasrep.2015.01.005.

[440]

Ching-Ying Tsou, Masahiro Chigira, Yuki Matsushi, Narumi Hiraishi, and Noriyuki Arai. Coupling fluvial processes and landslide distribution toward geomorphological hazard assessment: a case study in a transient landscape in japan. LANDSLIDES, 14(6):1901–1914, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019589894&doi=10.1007%2fs10346-017-0838-3&partnerID=40&md5=2e6a41e531e491b30b77f8743154ddaf, doi:10.1007/s10346-017-0838-3.

[441]

Richard Tuffin, David Roe, Martin Gibbs, Donald Clark, and Marcus Clark. Landscapes of production and punishment: lidar and the process of feature identification and analysis at a tasmanian convict station. Australian Archaeology, 86(1):37–56, 2020. doi:10.1080/03122417.2020.1749406.

[442]

Mark Axel Tveskov, Chelsea Rose, Geoffrey Jones, and David Maki. Every rusty nail is sacred, every rusty nail is good: conflict archaeology, remote sensing, and community engagement at a northwest coast settler fort. American Antiquity, 84(1):48–67, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061008015&doi=10.1017%2faaq.2018.80&partnerID=40&md5=9557864db5bc606b2805b275e0394ba4, doi:10.1017/aaq.2018.80.

[443]

E. L. Usery, S. T. Arundel, E. Shavers, L. Stanislawski, P. Thiem, and D. Varanka. Geoai in the us geological survey for topographic mapping. Transactions in GIS, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113892394&doi=10.1111%2ftgis.12830&partnerID=40&md5=9c29af42827dce19f84c61b87079c714, doi:10.1111/tgis.12830.

[444]

L.-M.L. Valdes, M. Katurji, and H. Meyer. A machine learning based downscaling approach to produce high spatio-temporal resolution land surface temperature of the antarctic dry valleys from modis data. Remote Sensing, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119895178&doi=10.3390%2frs13224673&partnerID=40&md5=a41f55ea0a292028dc88ef3b4aeb55a1, doi:10.3390/rs13224673.

[445]

Hanne van den Berghe, W. Gheyle, N. Note, B. Stichelbaut, M. van Meirvenne, J. Bourgeois, and V. van Eetvelde. Revealing the preservation of first world war shell hole landscapes based on a landscape change study and lidar. Geografisk Tidsskrift - Danish Journal of Geography, 119(1):38–51, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058647072&doi=10.1080%2f00167223.2018.1556105&partnerID=40&md5=44537c8c97c07bc53bca9f99748191fd, doi:10.1080/00167223.2018.1556105.

[446]

Miet van den Eeckhaut, Norman Kerle, Jean Poesen, and Javier Hervás. Object-oriented identification of forested landslides with derivatives of single pulse lidar data. Geomorphology, 173-174:30–42, 2012. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84865970067&doi=10.1016%2fj.geomorph.2012.05.024&partnerID=40&md5=07efdb27b1dc330604b81379d99d1441, doi:10.1016/j.geomorph.2012.05.024.

[447]

Frank van der Hoeven and Alexander Wandl. Amsterwarm: mapping the landuse, health and energy-efficiency implications of the amsterdam urban heat island. Building Services Engineering Research and Technology, 36(1):67–88, 2015. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84915745926&doi=10.1177%2f0143624414541451&partnerID=40&md5=38dbf7471d98e64e4e9343ade9f0397d, doi:10.1177/0143624414541451.

[448]

Frank van der Hoeven and Alexander Wandl. Hotterdam: mapping the social, morphological, and land-use dimensions of the rotterdam urban heat island. Urbani Izziv, 29(1):58–72, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049352484&doi=10.5379%2furbani-izziv-en-2018-29-01-001&partnerID=40&md5=af89b0e0869b621b243a54143e5a0c1f, doi:10.5379/urbani-izziv-en-2018-29-01-001.

[449]

H. van Gils and T. Kasielke. Historical parcellation and ridge-and-furrow relics of open strip-fields in the north-west european lowlands. Landscape History, 43(2):77–102, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143356492&doi=10.1080%2f01433768.2022.2143158&partnerID=40&md5=7c19b09b1182e86c09918bb49dee8fd5, doi:10.1080/01433768.2022.2143158.

[450]

Aristotelis Vartholomaios. A machine learning approach to modelling solar irradiation of urban and terrain 3d models. Computers, Environment and Urban Systems, 78:101387, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070681993&doi=10.1016%2fj.compenvurbsys.2019.101387&partnerID=40&md5=d43df2d67d9c25608ddd7f46d42e9237, doi:10.1016/j.compenvurbsys.2019.101387.

[451]

Timotej Verbovšek, Tomislav Popit, and Žiga Kokalj. Vat method for visualization of mass movement features: an alternative to hillshaded dem. Remote Sensing, 11(24):2946, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077893489&doi=10.3390%2frs11242946&partnerID=40&md5=e75ae2b9e0ac88cb64a7b4ced5540233, doi:10.3390/rs11242946.

[452]

Geert Verhoeven and Frank Vermeulen. Engaging with the canopy—multi-dimensional vegetation mark visualisation using archived aerial images. Remote Sensing, 8(9):752, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019352916&doi=10.3390%2frs8090752&partnerID=40&md5=ecceeaabee06785fe99f9b93f39b5e44, doi:10.3390/rs8090752.

[453]

Geert J. Verhoeven. Mesh is more—using all geometric dimensions for the archaeological analysis and interpretative mapping of 3d surfaces. Journal of Archaeological Method and Theory, 24(4):999–1033, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994442693&doi=10.1007%2fs10816-016-9305-z&partnerID=40&md5=d3cd1cbbcfc1aa2c300e92422d7c21fa, doi:10.1007/s10816-016-9305-z.

[454]

Julio Manuel Vidal Encinas, José Manuel Costa García, David González Álvarez, and Andrés Menéndez Blanco. La presencia del ejército romano en las montañas de el bierzo (león): novedades arqueológicas. Anales de Arqueologia Cordobesa, 29:85–110, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061162040&doi=10.21071%2faac.v29i0.11021&partnerID=40&md5=4fb2f8bb4498ae5fb9b50873253a2b66, doi:10.21071/aac.v29i0.11021.

[455]

F. H. Wagner, V. Peripato, R. Kipnis, S. L. Werdesheim, R. Dalagnol, L.E.O.C. Aragão, and M.C.M. Hirye. Fast computation of digital terrain model anomalies based on lidar data for geoglyph detection in the amazon. Remote Sensing Letters, 13(9):935–945, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85136183338&doi=10.1080%2f2150704X.2022.2109942&partnerID=40&md5=2862f1a9d80e2fa7d23f79d60df3d1c4, doi:10.1080/2150704X.2022.2109942.

[456]

Alina Walch, Roberto Castello, Nahid Mohajeri, and Jean-Louis Scartezzini. Big data mining for the estimation of hourly rooftop photovoltaic potential and its uncertainty. APPLIED ENERGY, 262:114404, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078898823&doi=10.1016%2fj.apenergy.2019.114404&partnerID=40&md5=e846207e62ab674500553b016d30cbf7, doi:10.1016/j.apenergy.2019.114404.

[457]

Wei Wang, Gaofei Yin, Wei Zhao, Fengping Wen, and Daijun Yu. Spatial downscaling of msg downward shortwave radiation product under clear-sky condition. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 58(5):3264–3272, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084129695&doi=10.1109%2fTGRS.2019.2951699&partnerID=40&md5=c18eb943b288e1dc7ba72780ed0a0a44, doi:10.1109/TGRS.2019.2951699.

[458]

L. Wang, B. Wu, A. Elnashar, W. Zhu, N. Yan, Z. Ma, S. Liu, and X. Niu. Incorporation of net radiation model considering complex terrain in evapotranspiration determination with sentinel-2 data. Remote Sensing, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126336910&doi=10.3390%2frs14051191&partnerID=40&md5=6d13a6217a18b427c3c5490b2927a299, doi:10.3390/rs14051191.

[459]

Marcus White, Youpei Hu, Nano Langenheim, Wowo Ding, and Mark Burry. Cool city design: integrating real-time urban canyon assessment into the design process for chinese and australian cities. URBAN PLANNING, 1(3):25–37, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044438667&doi=10.17645%2fup.v1i3.646&partnerID=40&md5=684b3a3dcf1a43134747dae13ee46e1e, doi:10.17645/up.v1i3.646.

[460]

Chandi Witharana, William B. Ouimet, and Katharine M. Johnson. Using lidar and geobia for automated extraction of eighteenth–late nineteenth century relict charcoal hearths in southern new england. GIScience and Remote Sensing, 55(2):183–204, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041568131&doi=10.1080%2f15481603.2018.1431356&partnerID=40&md5=3abca52f5d874c9a696f8d3f60261993, doi:10.1080/15481603.2018.1431356.

[461]

Shengbiao Wu, Jianguang Wen, Dongqin You, Hailong Zhang, Qing Xiao, and Qinhuo Liu. Algorithms for calculating topographic parameters and their uncertainties in downward surface solar radiation (dssr) estimation. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 15(8):1149–1153, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047014707&doi=10.1109%2fLGRS.2018.2831916&partnerID=40&md5=6c34cd1ed2a3951331df99e92521dc89, doi:10.1109/LGRS.2018.2831916.

[462]

Yuwei Wu, Ninglian Wang, Zhen Li, Anan Chen, Zhongming Guo, and Yufan Qie. The effect of thermal radiation from surrounding terrain on glacier surface temperatures retrieved from remote sensing data: a case study from qiyi glacier, china. REMOTE SENSING OF ENVIRONMENT, 231:111267, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067871204&doi=10.1016%2fj.rse.2019.111267&partnerID=40&md5=bb94b97d03b8f7839792dbe94d1f7f8d, doi:10.1016/j.rse.2019.111267.

[463]

Xinyao Xie and Ainong Li. An adjusted two–leaf light use efficiency model for improving gpp simulations over mountainous areas. Journal of Geophysical Research: Atmospheres, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087695104&doi=10.1029%2f2019JD031702&partnerID=40&md5=5edc2103e8a6be2a74ae31987029edf8, doi:10.1029/2019JD031702.

[464]

Xinyao Xie, Jing M. Chen, Peng Gong, and Ainong Li. Spatial scaling of gross primary productivity over sixteen mountainous watersheds using vegetation heterogeneity and surface topography. Journal of Geophysical Research: Biogeosciences, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106908599&doi=10.1029%2f2020JG005848&partnerID=40&md5=f8868f1c3c4b8e4603456f3c82217c5b, doi:10.1029/2020JG005848.

[465]

X. Xie, A. Li, H. Jin, J. Bian, Z. Zhang, and X. Nan. Comparing three remotely sensed approaches for simulating gross primary productivity over mountainous watersheds: a case study in the wanglang national nature reserve, china. Remote Sensing, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114681806&doi=10.3390%2frs13183567&partnerID=40&md5=c78b5cdbbc89d97c5263345cffe59187, doi:10.3390/rs13183567.

[466]

X. Xie, A. Li, J. Tian, C. Wu, and H. Jin. A fine spatial resolution estimation scheme for large-scale gross primary productivity (gpp) in mountain ecosystems by integrating an eco-hydrological model with the combination of linear and non-linear downscaling processes. Journal of Hydrology, 2023. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85145547978&doi=10.1016%2fj.jhydrol.2022.128833&partnerID=40&md5=843c5eb634b83f187bdacabfe5426626, doi:10.1016/j.jhydrol.2022.128833.

[467]

F. Xu, P. Xia, H. You, and J. Du. Robotic cross-platform sensor fusion and augmented visualization for large indoor space reality capture. Journal of Computing in Civil Engineering, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137739502&doi=10.1061%2f%28ASCE%29CP.1943-5487.0001047&partnerID=40&md5=f717e59c903364f18527465d9e25220e, doi:10.1061/(ASCE)CP.1943-5487.0001047.

[468]

X. Xu, W. Qiu, W. Li, D. Huang, X. Li, and S. Yang. Comparing satellite image and gis data classified local climate zones to assess urban heat island: a case study of guangzhou. Frontiers in Environmental Science, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143373848&doi=10.3389%2ffenvs.2022.1029445&partnerID=40&md5=c9119ef396eda5eb281fa6586313a531, doi:10.3389/fenvs.2022.1029445.

[469]

Jinxin Yang, Man Sing Wong, Massimo Menenti, and Janet Nichol. Modeling the effective emissivity of the urban canopy using sky view factor. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 105:211–219, 2015. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928676341&doi=10.1016%2fj.isprsjprs.2015.04.006&partnerID=40&md5=597e04df6e880e9baa990d1a0173ed7b, doi:10.1016/j.isprsjprs.2015.04.006.

[470]

Jinxin Yang, Man Sing Wong, Massimo Menenti, and Janet Nichol. Study of the geometry effect on land surface temperature retrieval in urban environment. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 109:77–87, 2015. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84942515396&doi=10.1016%2fj.isprsjprs.2015.09.001&partnerID=40&md5=7d2feb6493039e00d736f401ef375c76, doi:10.1016/j.isprsjprs.2015.09.001.

[471]

Jinxin Yang, Man Sing Wong, Massimo Menenti, Janet Nichol, James Voogt, E. Scott Krayenhoff, and P. W. Chan. Development of an improved urban emissivity model based on sky view factor for retrieving effective emissivity and surface temperature over urban areas. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 122:30–40, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994618751&doi=10.1016%2fj.isprsjprs.2016.09.007&partnerID=40&md5=ceb6600f4b5729757085620df19865de, doi:10.1016/j.isprsjprs.2016.09.007.

[472]

Jinxin Yang, Man Sing Wong, and Massimo Menenti. Effects of urban geometry on turbulent fluxes: a remote sensing perspective. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 13(12):1767–1771, 2016. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991109565&doi=10.1109%2fLGRS.2016.2607759&partnerID=40&md5=dafce7d0f8baf6c2a6b977e8d892ada8, doi:10.1109/LGRS.2016.2607759.

[473]

J. Yang, Q. Shi, M. Menenti, Y. Xie, Z. Wu, Y. Xu, and S. Abbas. Characterizing the thermal effects of vegetation on urban surface temperature. URBAN CLIMATE, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131838518&doi=10.1016%2fj.uclim.2022.101204&partnerID=40&md5=3bbf050509ca20c95c6379206c1e7b29, doi:10.1016/j.uclim.2022.101204.

[474]

Gaofei Yin, Ainong Li, Wei Zhao, Huaan Jin, Jinhu Bian, and Shengbiao Wu. Modeling canopy reflectance over sloping terrain based on path length correction. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 55(8):4597–4609, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018874563&doi=10.1109%2fTGRS.2017.2694483&partnerID=40&md5=b8f5f7b3f3c88b4d0f2752d0c3bc10bd, doi:10.1109/TGRS.2017.2694483.

[475]

Gaofei Yin, Ainong Li, Shengbiao Wu, Weiliang Fan, Yelu Zeng, Kai Yan, Baodong Xu, Jing Li, and Qinhuo Liu. Plc: a simple and semi-physical topographic correction method for vegetation canopies based on path length correction. REMOTE SENSING OF ENVIRONMENT, 215:184–198, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048303820&doi=10.1016%2fj.rse.2018.06.009&partnerID=40&md5=d54a9611d84a479965d40e158ba98cfe, doi:10.1016/j.rse.2018.06.009.

[476]

Klemen Zakšek, Kristof Oštir, and Žiga Kokalj. Sky-view factor as a relief visualization technique. Remote Sensing, 3(2):398–415, 2011. doi:10.3390/rs3020398.

[477]

Klemen Zakšek and Krištof Oštir. Downscaling land surface temperature for urban heat island diurnal cycle analysis. REMOTE SENSING OF ENVIRONMENT, 117:114–124, 2012. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84855446968&doi=10.1016%2fj.rse.2011.05.027&partnerID=40&md5=238814fdaff43b49b4d00a39ee79f8df, doi:10.1016/j.rse.2011.05.027.

[478]

Yanlin Zhang, Xiaoli Chang, and Ji Liang. Comparison of different algorithms for calculating the shading effects of topography on solar irradiance in a mountainous area. ENVIRONMENTAL EARTH SCIENCES, 2017. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017201939&doi=10.1007%2fs12665-017-6618-5&partnerID=40&md5=53497daef90f3df09eb379594a032569, doi:10.1007/s12665-017-6618-5.

[479]

Y. L. Zhang, X. Li, G. D. Cheng, H. J. Jin, D. W. Yang, G. N. Flerchinger, X. L. Chang, X. Wang, and J. Liang. Influences of topographic shadows on the thermal and hydrological processes in a cold region mountainous watershed in northwest china. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 10(7):1439–1457, 2018. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050827341&doi=10.1029%2f2017MS001264&partnerID=40&md5=82435c07fd1efd62147ffe9ac7305669, doi:10.1029/2017MS001264.

[480]

Guan-Ting Zhang, Edward Verbree, and Xiao-Jun Wang. An approach to map visibility in the built environment from airborne lidar point clouds. IEEE Access, 9:44150–44161, 2021. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103418078&doi=10.1109%2fACCESS.2021.3066649&partnerID=40&md5=041d9f20d4d80bbdd5decad25dcc959f, doi:10.1109/ACCESS.2021.3066649.

[481]

C. Zhang, Y. Guo, Z. He, L. He, and H. Xu. Analysis of influence mechanism of spatial distribution of incoming solar radiation based on dem. Earth Science Informatics, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122789952&doi=10.1007%2fs12145-021-00740-0&partnerID=40&md5=11ce6394076baa8151c627fc96637aa5, doi:10.1007/s12145-021-00740-0.

[482]

S. Zhang, X. Fang, C. Cheng, L. Chen, L. Zhang, Y. Yu, L. Li, and H. Luo. Research on the planning method and strategy of urban wind and heat environment optimization—taking shenzhen, a sub-tropical megacity in southern china, as an example. ATMOSPHERE, 2022. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138684177&doi=10.3390%2fatmos13091395&partnerID=40&md5=e83ba3ad9b09f94c88f45adfff73e329, doi:10.3390/atmos13091395.

[483]

Wei Zhou, Fulong Chen, Huadong Guo, Mingyuan Hu, Qi Li, Panpan Tang, Wenwu Zheng, Jian'an Liu, Rupeng Luo, Kaikai Yan, Ru Li, Pilong Shi, and Sheng Nie. Uav laser scanning technology: a potential cost-effective tool for micro-topography detection over wooded areas for archaeological prospection. International Journal of Digital Earth, 13(11):1279–1301, 2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078608030&doi=10.1080%2f17538947.2019.1711209&partnerID=40&md5=1c822767ff74f6bef352578947b8c21e, doi:10.1080/17538947.2019.1711209.

[484]

Georg Zotti and Wolfgang Neubauer. Beyond the landscape: analysis of neolithic circular ditch systems of lower austria with advanced virtual archaeoastronomy. Virtual Archaeology Review, 10(21):90, 2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071320166&doi=10.4995%2fvar.2019.10772&partnerID=40&md5=1f032a7730cafc39f7a129e87b825d8f, doi:10.4995/var.2019.10772.